The major function of human transferrin is to deliver iron from the bloodstream to actively dividing cells. Upon iron release, the protein changes its conformation from 'closed' to 'open'. Extensive studies in vitro indicate that iron release from transferrin is very complex and involves many factors, including pH, the chelator used, an anion effect, temperature, receptor binding and intra-lobe interactions. Our earlier work [He, Mason and Woodworth (1997) Biochem. J. 328, 439-445] using the isolated transferrin N-lobe (recombinant N-lobe of human transferrin comprising residues 1-337; hTF/2N) has shown that anions and pH modulate iron release from hTF/2N in an interdependent manner: chloride retards iron release at neutral pH, but accelerates the reaction at acidic pH. The present study supports this idea and further details the nature of the dual effect of chloride: the anion effect on iron release is closely related to the strength of anion binding to the apoprotein. The negative effect seems to originate from competition between chloride and the chelator for an anion-binding site(s) near the metal centre. With decreasing pH, the strength of anion binding to hTF/2N increases linearly, decreasing the contribution of competition with the chelator. In the meantime, the 'open' or 'loose' conformation of hTF/2N, induced by the protonation of critical residues such as the Lys-206/Lys-296 pair at low pH, enables chloride to enter the cleft and bind to exposed side chains, thereby promoting cleft opening and synergistically allowing removal of iron by the chelator, leading to a positive anion effect. Disabling one or more of the primary anion-binding residues, namely Arg-124, Lys-206 and Lys-296, substantially decreases the anion-binding ability of the resulting mutant proteins. In these cases, the competition for the remaining binding residue(s) is increased, leading to a negative chloride effect or, at most, a very small positive effect, even at low pH.
Human serum transferrin N-lobe (hTF\2N) contains three conserved tryptophan residues, Trp), Trp"#) and Trp#'%, located in three different environments. The present report addresses the different contributions of the three tryptophan residues to the UV-visible, fluorescence and NMR spectra of hTF\2N and the effect of the mutations at each tryptophan residue on the iron-binding properties of the protein. Trp) resides in a hydrophobic box containing a cluster of three phenylalanine side chains and is H bonded through the indole N to an adjacent water cluster lying between two β-sheets containing Trp) and Lys#*' respectively. The fluorescence of Trp) may be quenched by the benzene rings. The apparent increase in the rate of iron release from the Trp) Tyr mutant could be due to the interference of the mutation with the H-bond linkage resulting in an effect on the second shell network. The partial quenching in the fluorescence
The major function of human transferrin is to deliver iron from the bloodstream to actively dividing cells. Upon iron release, the protein changes its conformation from 'closed' to 'open'. Extensive studies in vitro indicate that iron release from transferrin is very complex and involves many factors, including pH, the chelator used, an anion effect, temperature, receptor binding and intra-lobe interactions. Our earlier work [He, Mason and Woodworth (1997) Biochem. J. 328, 439-445] using the isolated transferrin N-lobe (recombinant N-lobe of human transferrin comprising residues 1-337; hTF/2N) has shown that anions and pH modulate iron release from hTF/2N in an interdependent manner: chloride retards iron release at neutral pH, but accelerates the reaction at acidic pH. The present study supports this idea and further details the nature of the dual effect of chloride: the anion effect on iron release is closely related to the strength of anion binding to the apoprotein. The negative effect seems to originate from competition between chloride and the chelator for an anion-binding site(s) near the metal centre. With decreasing pH, the strength of anion binding to hTF/2N increases linearly, decreasing the contribution of competition with the chelator. In the meantime, the 'open' or 'loose' conformation of hTF/2N, induced by the protonation of critical residues such as the Lys-206/Lys-296 pair at low pH, enables chloride to enter the cleft and bind to exposed side chains, thereby promoting cleft opening and synergistically allowing removal of iron by the chelator, leading to a positive anion effect. Disabling one or more of the primary anion-binding residues, namely Arg-124, Lys-206 and Lys-296, substantially decreases the anion-binding ability of the resulting mutant proteins. In these cases, the competition for the remaining binding residue(s) is increased, leading to a negative chloride effect or, at most, a very small positive effect, even at low pH.
ATP‐citrate lyase (ACLY) catalyzes production of acetyl‐CoA and oxaloacetate from CoA and citrate using ATP. In humans, this cytoplasmic enzyme connects energy metabolism from carbohydrates to the production of lipids. In certain bacteria, ACLY is used to fix carbon in the reductive tricarboxylic acid cycle. The carboxy(C)‐terminal portion of ACLY shows sequence similarity to citrate synthase of the tricarboxylic acid cycle. To investigate the roles of residues of ACLY equivalent to active site residues of citrate synthase, these residues in ACLY from Chlorobium limicola were mutated, and the proteins were investigated using kinetics assays and biophysical techniques. To obtain the crystal structure of the C‐terminal portion of ACLY, full‐length C. limicola ACLY was cleaved, first non‐specifically with chymotrypsin and subsequently with Tobacco Etch Virus protease. Crystals of the C‐terminal portion diffracted to high resolution, providing structures that show the positions of active site residues and how ACLY tetramerizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.