Paddy Rice is the prevalent land cover in the mosaicked landscape of the Hanoi Capital Region, Vietnam. In this study, we map double and single crop rice in Hanoi using a random forest algorithm and a time-series of Sentinel-1 SAR imagery at 10 and 20 m resolution using VV-only, VH-only, and both polarizations. We compare spatial and areal variation and quantify input band importance, estimate crop growth stages, estimate rice field/collective metrics using Fragstats with image segmentation, and highlight the importance of the results for land use and land cover. Results suggest double crop rice ranged from 208 000 to 220 000 ha with 20-m resolution imagery accounting for the most area in all polarizations. Based on accuracy assessment, we found 10 m data for VV/VH to have highest overall accuracy (93.5%, ±1.33%), while VV at 10 and 20 m had lowest overall accuracies (90.9%, ±1.57; 91.0%, ±2.75). Mean decrease in accuracy suggests for all but VV at 10 m, data from harvest and flooding stages are most critical for classification. Results suggest 20 m data for both VV and VH overestimates rice land cover, however 20 m data may be indicative of rice land use. Analysis of growing season suggests average estimated length of 93-104 days for each season. Commune-level results suggest up to 20% coefficient of variation between VV10m and VH10m with significant spatial variation in rice area. Landscape metrics show rice fields are typically plantedin groups of 3-4 fields with over 796 000 collectives and 2.69 millionfields estimated in the study area.
In this study, we estimate rice residue, associated burning emissions, and compare results with existing emissions inventories employing a bottom-up approach. We first estimated field-level post-harvest rice residues, including separate fuel-loading factors for rice straw and rice stubble. Results suggested fuel-loading factors of 0.27 kg m −2 (±0.033), 0.61 kg m −2 (±0.076), and 0.88 kg m −2 (±0.083) for rice straw, stubble, and total post-harvest biomass, respectively. Using these factors, we quantified potential emissions from rice residue burning and compared our estimates with other studies. Our results suggest total rice residue burning emissions as 2.24 Gg PM 2.5 , 36.54 Gg CO and 567.79 Gg CO 2 for Hanoi Province, which are significantly higher than earlier studies. We attribute our higher emission estimates to improved fuel-loading factors; moreover, we infer that some earlier studies relying on residue-to-product ratios could be underestimating rice residue emissions by more than a factor of 2.3 for Hanoi, Vietnam. Using the rice planted area data from the Vietnamese government, and combining our fuel-loading factors, we also estimated rice residue PM 2.5 emissions for the entirety of Vietnam and compared these estimates with an existing all-sources emissions inventory, and the Global Fire Emissions Database (GFED). Results suggest 75.98 Gg of PM 2.5 released from rice residue burning accounting for 12.8% of total emissions for Vietnam. The GFED database suggests 42.56 Gg PM 2.5 from biomass burning with 5.62 Gg attributed to agricultural waste burning indicating satellite-based methods may be significantly underestimating emissions. Our results not only provide improved residue and emission estimates, but also highlight the need for emissions mitigation from rice residue burning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.