Fragile X syndrome is the leading monogenic cause of ASD. Trinucleotide repeats in the FMR1 gene abolish FMRP protein expression, leading to hyperactivation of ERK and mTOR signaling, upstream of mRNA translation. Here we show that metformin, the most widely used anti-type 2 diabetes drug, rescues core phenotypes in Fmr1-/y mice and selectively normalizes Erk signaling, Eif4e phosphorylation and the expression of Mmp9. Thus, metformin is a potential FXS therapeutic. Dysregulated mRNA translation is linked to core pathologies diagnosed in the Fragile X neurodevelopmental Syndrome (FXS), such as social and behavior problems, developmental delays and learning disabilities 1,2. In the brains of FXS patients and knockout mice (Fmr1-/y ; X-linked Fmr1 deletion in male mice), loss of Fragile X mental retardation protein (FMRP) results in hyperactivation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1) and the extracellular signal-regulated kinase (ERK) signaling pathways 1,2. Consistent with increased ERK activity, eukaryotic initiation factor 4E (eIF4E) phosphorylation is elevated in the brain of FXS patients and Fmr1-/y mice, thereby promoting translation of the mRNA encoding for matrix metalloproteinase 9 (MMP-9), which is elevated in the brains of both FXS patients and the Fmr1-/y mice 1-5. In accordance with these findings, knockout of Mmp9 rescues the majority of phenotypes in Fmr1-/y mice. MMP-9 degrades components of the extracellular matrix, including proteins important for synaptic function and maturation, which are implicated in FXS and autism spectrum disorders (ASD). Recent observations indicate that metformin, a first-line therapy for type 2 diabetes, imparts numerous health benefits beyond its original therapeutic use, such as decreased cancer risk and improved cancer prognosis 6. Metformin inhibits the mitochondrial respiratory chain complex 1, leading to a decrease in cellular energy state and thus activation of the energy sensor AMP-activated protein kinase (AMPK) 6. Several AMPK-independent activities of metformin have also been reported 7,8. Since metformin suppresses translation by inhibiting
Additional informationPeer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.
Translational control plays a key role in regulation of neuronal activity and behavior. Deletion of the translational repressor 4E-BP2 in mice alters excitatory and inhibitory synaptic functions, engendering autistic-like behaviors. The contribution of 4E-BP2-dependent translational control in excitatory and inhibitory neurons and astrocytic cells to these behaviors remains unknown. To investigate this, we generated cell-type-specific conditional 4E-BP2 knockout mice and tested them for the salient features of autism, including repetitive stereotyped behaviors (self-grooming and marble burying), sociability (3-chamber social and direct social interaction tests), and communication (ultrasonic vocalizations in pups). We found that deletion of 4E-BP2 in GABAergic inhibitory neurons, defined by Gad2, resulted in impairments in social interaction and vocal communication. In contrast, deletion of 4E-BP2 in forebrain glutamatergic excitatory neurons, defined by Camk2a, or in astrocytes, defined by Gfap, failed to cause autistic-like behavioral abnormalities. Taken together, we provide evidence for an inhibitory-cell-specific role of 4E-BP2 in engendering autism-related behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.