3H-1,2-dithiole-3-thione (D3T) and its analogues 4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (OLT) and 5-tert-butyl-3H-1, 2-dithiole-3-thione (TBD) are chemopreventive agents that block or diminish early stages of carcinogenesis by inducing activities of detoxication enzymes. While OLT has been used in clinical trials, TBD has been shown to be more efficacious and possibly less toxic than OLT in animals. Here, we utilize a robust and high-resolution chemical genomics procedure to examine the pharmacological structure-activity relationships of these compounds in livers of male rats by microarray analyses. We identified 226 differentially expressed genes that were common to all treatments. Functional analysis identified the relation of these genes to glutathione metabolism and the nuclear factor, erythroid derived 2-related factor 2 pathway (Nrf2) that is known to regulate many of the protective actions of dithiolethiones. OLT and TBD were shown to have similar efficacies and both were weaker than D3T. In addition, we identified 40 genes whose responses were common to OLT and TBD, yet distinct from D3T. As inhibition of cytochrome P450 (CYP) has been associated with the effects of OLT on CYP expression, we determined the half maximal inhibitory concentration (IC 50 ) values for inhibition of CYP1A2. The rank order of inhibitor potency was OLT ) TBD ) D3T, with IC 50 values estimated as 0.2, 12.8 and >100 mM, respectively. Functional analysis revealed that OLT and TBD, in addition to their effects on CYP, modulate liver lipid metabolism, especially fatty acids. Together, these findings provide new insight into the actions of clinically relevant and lead dithiolethione analogues.
Post hoc assignment of patterns determined by all pairwise comparisons in microarray experiments with multiple treatments has been proven to be useful in assessing treatment effects. We propose the usage of transitive directed acyclic graphs (tDAG) as the representation of these patterns and show that such representation can be useful in clustering treatment effects, annotating existing clustering methods, and analyzing sample sizes. Advantages of this approach include: (1) unique and descriptive meaning of each cluster in terms of how genes respond to all pairs of treatments; (2) insensitivity of the observed patterns to the number of genes analyzed; and (3) a combinatorial perspective to address the sample size problem by observing the rate of contractible tDAG as the number of replicates increases. The advantages and overall utility of the method in elaborating drug structure activity relationships are exemplified in a controlled study with real and simulated data.
BackgroundIdentification of transcription factors (TFs) responsible for modulation of differentially expressed genes is a key step in deducing gene regulatory pathways. Most current methods identify TFs by searching for presence of DNA binding motifs in the promoter regions of co-regulated genes. However, this strategy may not always be useful as presence of a motif does not necessarily imply a regulatory role. Conversely, motif presence may not be required for a TF to regulate a set of genes. Therefore, it is imperative to include functional (biochemical and molecular) associations, such as those found in the biomedical literature, into algorithms for identification of putative regulatory TFs that might be explicitly or implicitly linked to the genes under investigation.ResultsIn this study, we present a Latent Semantic Indexing (LSI) based text mining approach for identification and ranking of putative regulatory TFs from microarray derived differentially expressed genes (DEGs). Two LSI models were built using different term weighting schemes to devise pair-wise similarities between 21,027 mouse genes annotated in the Entrez Gene repository. Amongst these genes, 433 were designated TFs in the TRANSFAC database. The LSI derived TF-to-gene similarities were used to calculate TF literature enrichment p-values and rank the TFs for a given set of genes. We evaluated our approach using five different publicly available microarray datasets focusing on TFs Rel, Stat6, Ddit3, Stat5 and Nfic. In addition, for each of the datasets, we constructed gold standard TFs known to be functionally relevant to the study in question. Receiver Operating Characteristics (ROC) curves showed that the log-entropy LSI model outperformed the tf-normal LSI model and a benchmark co-occurrence based method for four out of five datasets, as well as motif searching approaches, in identifying putative TFs.ConclusionsOur results suggest that our LSI based text mining approach can complement existing approaches used in systems biology research to decipher gene regulatory networks by providing putative lists of ranked TFs that might be explicitly or implicitly associated with sets of DEGs derived from microarray experiments. In addition, unlike motif searching approaches, LSI based approaches can reveal TFs that may indirectly regulate genes.
Most current approach to metagenomic classification employ short next generation sequencing (NGS) reads that are present in metagenomic samples to identify unique genomic regions. NGS reads, however, might not be long enough to differentiate similar genomes. This suggests a potential for using longer reads to improve classification performance. Presently, longer reads tend to have a higher rate of sequencing errors. Thus, given the pros and cons, it remains unclear which types of reads is better for metagenomic classification. We compared two taxonomic classification protocols: a traditional assembly-free protocol and a novel assembly-based protocol. The novel assembly-based protocol consists of assembling short-reads into longer reads, which will be subsequently classified by a traditional taxonomic classifier. We discovered that most classifiers made fewer predictions with longer reads and that they achieved higher classification performance on synthetic metagenomic data. Generally, we observed a significant increase in precision, while having similar recall rates. On real data, we observed similar characteristics that suggest that the classifiers might have similar performance of higher precision with similar recall with longer reads. We have shown a noticeable difference in performance between assembly-based and assembly-free taxonomic classification. This finding strongly suggests that classifying species in metagenomic environments can be achieved with higher overall performance simply by assembling short reads. Further, it also suggests that long-read technologies might be better for species classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.