Depression is a psychological disorder that affects millions of peoplein theworld, regardless of their age, social class or nationality. In theliterature, different techniques have been studying to analyze andrecognize this disease such as Natural Language Processing, SentimentAnalysis, and Machine Learning. In this paper, we describe asystematic mapping to identify evidence regarding techniques thatare often used to identify depressive profiles.We analyzed 472 studiesand we selected 25 primary studies. These studies indicate thatthe SVM and NB techniques have been most used to detect possibledepressive profiles in social networks. Furthermore, Twitter andFacebook with 35,5% and 22,6%, respectively were the social mediamost have been used by users’ express their feelings regarding themost varied subjects.
A depressão é um distúrbio psicológico que afeta milhões de pessoas no mundo, indiferente à idade, classe social ou nacionalidade. Diferentes técnicas tem sido exploradas para analisar e reconhecer sintomas depressivos na literatura, como técnicas de Processamento de Linguagem Natural e Análise de Sentimentos. Entretanto, para o português brasileiro, poucos estudos tem proposto datasets para a classificação de sintomas da depressão. Neste artigo, propomos uma estratégia chamada DP-Symptom-Identifier para coletar tweets e criar um novo dataset com sentenças que possuem sintomas da depressão. Experimentos iniciais usando diferentes algoritmos obtiveram um alto desempenho preditivo, o que mostra que as pesquisas nesta área são promissoras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.