Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.
After much debate, there is an emerging consensus that the composition of many ecological communities is determined both by species traits, as proposed by niche theory, as well as by chance events. A critical question for ecology is, therefore, which attributes of species predict the dominance of deterministic or stochastic processes. We outline two hypotheses by which organism size could determine which processes structure ecological communities, and we test these hypotheses by comparing the community structure in bromeliad phytotelmata of three groups of organisms (bacteria, zooplankton, and macroinvertebrates) that encompass a 10 000-fold gradient in body size, but live in the same habitat. Bacteria had no habitat associations, as would be expected from trait-neutral stochastic processes, but still showed exclusion among species pairs, as would be expected from niche-based processes. Macroinvertebrates had strong habitat and species associations, indicating niche-based processes. Zooplankton, with body size between bacteria and macroinvertebrates, showed intermediate habitat associations. We concluded that a key niche process, habitat filtering, strengthened with organism size, possibly because larger organisms are both less plastic in their fundamental niches and more able to be selective in dispersal. These results suggest that the relative importance of deterministic and stochastic processes may be predictable from organism size.
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.
SUMMARY1. This review focuses on direct and indirect interactions between dissolved humic substances (HS) and freshwater organisms and presents novel opinions and hypotheses on their ecological significance. Despite their abundance in freshwaters, the role of HS is still inadequately understood. These substances have been considered too large to be taken up by freshwater organisms. On the contrary, here we present evidence that dissolved HS are indeed taken up and interact directly and/or indirectly with freshwater organisms. 2. We show that dissolved HS exert a mild chemical stress upon aquatic organisms in many ways; they induce molecular chaperones (stress shock proteins), induce and modulate biotransformation enzymes and modulate (mainly inhibiting) the photosynthetic release of oxygen by freshwater plants. Furthermore, they produce an oxidative stress, which may lead to membrane oxidation. HS modulate the multixenobiotic resistance activity and probably other membrane-bound pumps. This property may lead to the increased bioaccumulation of xenobiotic chemicals. Furthermore, they can modulate the numbers of offspring in a nematode and feminise fish and amphibians. The ecological consequences of this potential remain obscure at present. HS also have the potential to act as chemical attractants (as shown with a nematode). 3. In some macrophytes and algae we show that HS interfere with photosynthesis and growth. For instance, the presence of HS suppresses cyanobacteria more than eukaryotic algae. By applying a quantitative structure activity relationship approach, we show that quinones in the HS interfere with photosynthetic electron transport. We show that even Phragmites leachate can act as a kind of phytotoxin. HS also have the potential to suppress fungal growth, as shown with the water mould Saprolegnia parasitica and force the fungus to respond by spore production. 4. In very soft, humic freshwaters, such as the Rio Negro, Brazil, HS stimulate the uptake of essential ions, such as Na and Ca, at extremely low pH (3.5-4.0) and prevent the ionoregulatory disturbance induced by acid waters, thereby enabling fish to survive in these environments. 5. We discuss whether or not HS are directly utilised by aquatic microorganisms or via exoenzymes, which may be washed in from the terrestrial catchment. There is accumulating evidence that the quality of the HS controls microbial growth. In total, netheterotrophy may result from HS-mediated suppression of primary production by the quinone structures and/or from HS-mediated support of microbial growth. As there is also evidence that HS have the potential to support photoautotrophic growth and suppress microbial growth, the opposite community effect could result. Consequently, dissolved organic carbon (DOC) has to be chemically characterised, rather than simply measuring bulk DOC concentration. 6. In sum, dissolved HS interact with freshwater organisms in a variety of ways in unenriched humic lakes. In addition to the well known effects of HS on light regime, for exampl...
Abstract. Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator : detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator : detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator : detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of largebodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the response and multitrophic effects of dominant, mobile species may be critical when predicting changes in community structure along a habitat-size gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.