The number of substances nominally listed in the prohibited list of the World Anti-Doping Agency increases each year. Moreover, many of these substances do not have a single analytical target and must be monitored through different metabolites, artifacts, degradation products, or biomarkers. A new analytical method was developed and validated for the simultaneous analysis of peptides and organic molecules using a single sample preparation and LC-Q-HRMS detection. The simultaneous analysis of 450 target molecules was performed after cleanup on a mixed-mode solid-phase extraction cartridge, combined with untreated urine. The cleanup solvent and reconstitution solvent were the most important parameters for achieving a comprehensive sample preparation approach. A fast chromatographic run based on a multistep gradient was optimized under different flows; the detection of all substances without isomeric coelution was achieved in 11 minutes, and the chromatographic resolution was considered a critical parameter, even in high-resolution mass spectrometry detection. The mass spectrometer was set to operate by switching between positive and negative ionization mode for FULL-MS, all-ion fragmentation, and FULL-MS/MS . The suitable parameters for the curved linear trap (c-trap) conditions were determined and found to be the most important factors for the development of the method. Only FULL-MS/MS enables the detection of steroids and peptides at concentrations lower than the minimum required performance levels set by World Anti-Doping Agency (1 ng mL ). The combination of the maximum injection time of the ions into the c-trap, multiplexing experiments, and loop count under optimized conditions enabled the method to be applied to over 10 000 samples in only 2 months during the 2016 Rio Summer Olympic and Paralympic Games. The procedure details all aspects, from sample preparation to mass spectrometry detection. FULL-MS data acquisition is performed in positive and negative ion mode simultaneously and can be applied to untargeted approaches.
This paper summarises the results obtained from the doping control analyses performed during the Summer XXXI Olympic Games (August 3-21, 2016) and the XV Paralympic Games (September 7-18, 2016). The analyses of all doping control samples were performed at the Brazilian Doping Control Laboratory (LBCD), a World Anti-Doping Agency (WADA)-accredited laboratory located in Rio de Janeiro, Brazil. A new facility at Rio de Janeiro Federal University (UFRJ) was built and fully operated by over 700 professionals, including Brazilian and international scientists, administrative staff, and volunteers. For the Olympic Games, 4913 samples were analysed. In 29 specimens, the presence of a prohibited substance was confirmed, resulting in adverse analytical findings (AAFs). For the Paralympic Games, 1687 samples were analysed, 12 of which were reported as AAFs. For both events, 82.8% of the samples were urine, and 17.2% were blood samples. In total, more than 31 000 analytical procedures were conducted. New WADA technical documents were fully implemented; consequently, state-of-the-art analytical toxicology instrumentation and strategies were applied during the Games, including different types of mass spectrometry (MS) analysers, peptide, and protein detection strategies, endogenous steroid profile measurements, and blood analysis. This enormous investment yielded one of the largest Olympic legacies in Brazil and South America.
Food intake in fish and mammals is orchestrated by hypothalamic crosstalk between orexigenic (food intake stimulation) and anorexigenic (food intake inhibition) signals. Some of these signals are released by peripheral tissues that are associated with energy homeostasis or nutrient availability. During the fish larva stage, orexigenic stimulation plays a critical role in individual viability. The goal of this study was to assess the mRNA levels of the main neuropeptides involved in food intake regulation (npy, agrp, carppt, and pomc), in concert with the mRNA levels and peptide levels of ghrelin, under a fasting intervention at the larval stage in zebrafish (Danio rerio). Prior to the fasting intervention, the zebrafish larva cohort was reared for 20 days post fertilization (dpf) and then randomly divided into two groups of 20 individuals. One group was subjected to a fasting intervention for 5 days (fasted group), and the other group was fed normally (fed group); this experimental protocol was performed twice independently. At the end of the fasting period, individuals from each experimental group were divided into different analysis groups, for evaluations such as relative gene expression, immunohistochemistry, and liquid chromatography coupled to nano high-resolution mass spectrometry (nLC-HRMS) analyses. The relative expression levels of the following genes were assessed: neuropeptide Y (npy), agouti-related peptide (agrp), proopiomelanocortin (pomc), cocaine and amphetamine-regulated transcript (cartpt), ghrelin (ghrl), ghrelin O-acyltransferase (mboat4), growth hormone secretagogue receptor (ghsr), and glucokinase (gck). In the fasted group, significant upregulation of orexigenic peptides (npy – agrp) and ghsr was observed, which was associated with significant downregulation of gck. The anorexigenic peptides (pomc and cartpt) did not show any significant modulation between the groups, similar to mboat4. Contrary to what was expected, the relative mRNA upregulation of the orexigenic peptides observed in the fasted experimental group could not be associated with significant ghrelin modulation as assessed by three different approaches: qPCR (relative gene expression of ghrelin), nLC-HRMS (des-acyl-ghrelin levels), and immunohistochemistry (integrated optical density of prepropeptides in intestinal and hepatopancreas tissues). Our results demonstrate that zebrafish larvae at 25 dpf exhibit suitable modulation of the relative mRNA levels of orexigenic peptides (npy and agrp) in response to fasting intervention; nevertheless, ghrelin was not coregulated by fasting. Therefore, it can be suggested that ghrelin is not an essential peptide for an increase in appetite in the zebrafish larva stage. These results give rise to new questions about food intake regulation factors in the early stages of fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.