Hyper-heuristics are high-level methodologies responsible for automatically discover how to combine elements from a low-level heuristic set in order to solve optimization problems. Agents, in turn, are autonomous component responsible for watching an environment and perform some actions according to their perceptions. Thus, agent-based techniques seem suitable for the design of hyper-heuristics. This work presents an agent-based hyper-heuristic framework for choosing the best low-level heuristic. The proposed framework performs a cooperative voting procedure, considering a set of quality indicator voters, to define which multi-objective evolutionary algorithm (MOEA) should generate more new solutions along the execution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.