Contact driven tasks, such as surface conditioning operations (wiping, polishing, sanding, etc.), are difficult to program in advance to be performed autonomously by a robotic system, specially when the objects involved are moving. In many applications, human-robot physical interaction can be used for the teaching, specially in learning from demonstrations frameworks, but this solution is not always available. Robot teleoperation is very useful when user and robot cannot share the same workspace due to hazardous environments, inaccessible locations, or because of ergonomic issues. In this sense, this paper introduces a novel dual-arm teleoperation architecture with haptic and visual feedback to enhance the operator immersion in surface treatment tasks. Two task-based assistance systems are also proposed to control each robotic manipulator individually. To validate the remote assisted control, some usability tests have been carried out using Baxter, a dual-arm collaborative robot. After analysing several benchmark metrics, the results show that the proposed assistance method helps to reduce the task duration and improves the overall performance of the teleoperation.
High dexterity is required in tasks in which there is contact between objects, such as surface conditioning (wiping, polishing, scuffing, sanding, etc.), specially when the location of the objects involved is unknown or highly inaccurate because they are moving, like a car body in automotive industry lines. These applications require the human adaptability and the robot accuracy. However, sharing the same workspace is not possible in most cases due to safety issues. Hence, a multi-modal teleoperation system combining haptics and an inertial motion capture system is introduced in this work. The human operator gets the sense of touch thanks to haptic feedback, whereas using the motion capture device allows more naturalistic movements. Visual feedback assistance is also introduced to enhance immersion. A Baxter dual-arm robot is used to offer more flexibility and manoeuvrability, allowing to perform two independent operations simultaneously. Several tests have been carried out to assess the proposed system. As it is shown by the experimental results, the task duration is reduced and the overall performance improves thanks to the proposed teleoperation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.