BACKGROUNDWhole brain atrophy is a putative outcome measure in monitoring relapsing‐remitting multiple sclerosis (RRMS). With the ongoing MRI transformation from 1.5T to 3T, there is an unmet need to calibrate this change. We evaluated brain parenchymal volumes (BPVs) from 1.5T versus 3T in MS and normal controls (NC).METHODSWe studied MS [n = 26, age (mean, range) 43 (21‐55), 22 (85%) RRMS, Expanded Disability Status Scale (EDSS) 1.98 (0‐6.5), timed 25 foot walk (T25FW) 5.95 (3.2‐33.0 seconds)] and NC [n = 9, age 45 (31‐53)]. Subjects underwent 1.5T (Phillips) and 3T (GE) 3‐dimensional T1‐weighted scans to derive normalized BPV from an automated SIENAX pipeline. Neuropsychological testing was according to consensus panel recommendations.RESULTSBPV‐1.5T was higher than BPV‐3T [mean (95% CI) + 45.7 mL (+35.3, +56.1), P < .00001], most likely due to improved tissue‐CSF contrast at 3T. BPV‐3T showed a larger volume decrease and larger effect size in detecting brain atrophy in MS versus NC [−74.5 mL (−126.5, −22.5), P = .006, d = .92] when compared to BPV‐1.5T [−51.3.1 mL (−99.8, −2.8), P = .04, d = .67]. Correlations between BPV‐1.5T and EDSS (r = −.43, P = .027) and BPV‐3T and EDSS (r = −.49, P = .011) and between BPV‐1.5T and T25FW (r = −.46, P = .018) and BPV‐3T and T25FW (r = −.56, P = .003) slightly favored 3T. BPV‐cognition correlations were significant (P < .05) for 6 of 11 subscales to a similar degree at 1.5T (r range = .44‐.58) and 3T (r range = .43‐.53).CONCLUSIONSField strength may impact whole brain volume measurements in patients with MS though the differences are not too divergent between 1.5T and 3T.
BackgroundThe reliable and efficient measurement of spinal cord atrophy is of growing interest in monitoring disease progression in multiple sclerosis (MS).MethodsWe compared T1- and T2-weighted MRI for measuring cervical spinal cord volume in 31 patients with MS and 18 age-matched controls (NC) from T1-weighted gradient recalled echo and T2-weighted fast spin-echo 1.5 T axial acquisitions. The two sequences were matched on slice thickness, signal averages and voxel size. An active surface software tool determined the normalized mean cervical cord cross-sectional area.ResultsT1-derived cord areas were higher than T2 areas in the whole cohort (estimated mean difference = 7.03 mm2 (8.89 %); 95 % Confidence Interval (CI): 5.91, 8.14; p < 0.0001) and in both groups separately. There were trends for lower spinal cord areas in MS vs. NC with both sequences. For the T1 cord area, the mean difference was 3.7 mm2 (4.55 %) (95 % CI: −1.36, 8.78; p = 0.15). For the T2 cord area, the difference was larger [mean difference 4.9 mm2 (6.52 %) (95 % CI: −0.83, 10.67); p = 0.091]. The T1 and T2 cord areas showed similar weak to moderate correlations with measures of clinical status and T2 spinal cord lesion volume in the MS group. Superficial spinal cord T2 lesions had no apparent confounding effect on the outlining tool. The mean intra-rater and inter-rater coefficients of variation ranged from 0.27 to 0.91 % for T1- and 0.66 to 0.99 % for T2-derived cord areas.ConclusionT2-weighted images may prove efficient for measuring cervical spinal cord atrophy in MS, with the added advantage of lesion detectability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.