Unmanned aerial vehicles (UAVs), commonly known as drones, have been progressively prevalent due to their capability to operate quickly and their vast range of applications in a variety of real-world circumstances. The utilization of UAVs in precision farming has lately gained a lot of attention from the scientific community. This study addresses with the assistance of drones in the precision agricultural area. This paper makes significant contributions by analyzing communication protocols and applying them to the challenge of commanding a fleet of drones to protect crops from parasite infestations. In this research, the effectiveness of nine powerful deep neural network models is measured for the detection of plant diseases using diverse methodologies. These deep neural networks are adapted to the immediate situation using transfer learning and deep extraction of features approaches. The presented study takes into account the used pretrained deep learning model for extracting features and fine-tuning. The deep feature extraction characteristics are subsequently categorized using support vector machines (SVMs) and extreme learning machines (ELMs). For measuring performance, the precision, sensitivities, specific, and F1-score are all evaluated. Deep feature extraction and SVM/ELM classification generated better outcomes than transfer learning, according to the analysis result. Furthermore, the analysis of the various methodologies tries to assess their effectiveness and costs. The different approaches, for example, confront difficulties such as investigating the region in the shortest possible time feasible, while eliminating the same region being searched by more drones, detecting parasites, and stopping their spread by applying the appropriate number of pesticides. Simulation models are a significant aid to researchers in conducting to evaluate these technologies and creating specific tactics and coordinating procedures capable of effectively supporting farms and achieving the aim. The main objective of this paper is to compare the search techniques of two distinct methods of parasitic to identify performance.
Drones, the Internet of Things (IoT), and Artificial Intelligence (AI) could be used to create extraordinary responses to today’s difficulties in smart city challenges. A drone, which would be effectively a data-gathering device, could approach regions that become complicated, dangerous, or even impossible to achieve for individuals. In addition to interacting with one another, drones must maintain touch with some other ground-based entities, including IoT sensors, robotics, and people. Throughout this study, an intelligent approach for predicting the signal power from a drone to IoT applications in smart cities is presented in terms of maintaining internet connectivity, offering the necessary quality of service (QoS), and determining the drone’s transmission range offered. Predicting signal power and fading channel circumstances enables the adaptable transmission of data, which improves QoS for endpoint users/devices while lowering transmitting data power usage. Depending on many relevant criteria, an artificial neural network (ANN)-centered precise and effective method is provided to forecast the signal strength from such drones. The signal strength estimations are also utilized to forecast the drone’s flight patterns. The results demonstrate that the proposed ANN approach has an excellent correlation with the verification data collected through computations, with the determination of coefficient R2 values of 0.97 and 0.98, correspondingly, for changes in drone height and distances from a drone. Furthermore, the finding shows that signal distortions could be considerably decreased and strengthened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.