Background Psoriasis is a chronic autoimmune skin disease characterized by hyperproliferation of keratinocytes. Wide treatment options used to treat psoriasis is associated with various adverse effects. To overcome this nanoformulation is prepared. Selenium is an essential trace element and plays major role in oxidation reduction system. Toxicity and stability limits the applications of selenium. Toxicity can be reduced and stabilized upon preparation into nanoparticles. Results Selenium nanoparticles (SeNPs) exhibit potent apoptosis through the generation of reactive oxygen species (ROS) with cell cycle arrest. SeNPs topical gel application produced significant attenuation of psoriatic severity with the abrogation of acanthosis and splenomegaly. SeNPs reduced the phosphorylation and expressions of MAPKs, STAT3, GSK-3β, Akt along with PCNA, Ki67, and cyclin-D1. Conclusion SeNPs inhibit various inflammation and proliferation mediated pathways and could be an ideal candidate for psoriasis therapy. Materials and methods SeNPs were characterized and various techniques were used to determine apoptosis and other molecular mechanisms. In vivo studies were performed by inducing psoriasis with imiquimod (IMQ). SeNPs were administered via topical route. Graphic Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.