SUMMARYThe finite volume method with exact two‐phase Riemann problems (FIVER) is a two‐faceted computational method for compressible multi‐material (fluid–fluid, fluid–structure, and multi‐fluid–structure) problems characterized by large density jumps, and/or highly nonlinear structural motions and deformations. For compressible multi‐phase flow problems, FIVER is a Godunov‐type discretization scheme characterized by the construction and solution at the material interfaces of local, exact, two‐phase Riemann problems. For compressible fluid–structure interaction (FSI) problems, it is an embedded boundary method for computational fluid dynamics (CFD) capable of handling large structural deformations and topological changes. Originally developed for inviscid multi‐material computations on nonbody‐fitted structured and unstructured grids, FIVER is extended in this paper to laminar and turbulent viscous flow and FSI problems. To this effect, it is equipped with carefully designed extrapolation schemes for populating the ghost fluid values needed for the construction, in the vicinity of the fluid–structure interface, of second‐order spatial approximations of the viscous fluxes and source terms associated with Reynolds averaged Navier–Stokes (RANS)‐based turbulence models and large eddy simulation (LES). Two support algorithms, which pertain to the application of any embedded boundary method for CFD to the robust, accurate, and fast solution of FSI problems, are also presented in this paper. The first one focuses on the fast computation of the time‐dependent distance to the wall because it is required by many RANS‐based turbulence models. The second algorithm addresses the robust and accurate computation of the flow‐induced forces and moments on embedded discrete surfaces, and their finite element representations when these surfaces are flexible. Equipped with these two auxiliary algorithms, the extension of FIVER to viscous flow and FSI problems is first verified with the LES of a turbulent flow past an immobile prolate spheroid, and the computation of a series of unsteady laminar flows past two counter‐rotating cylinders. Then, its potential for the solution of complex, turbulent, and flexible FSI problems is also demonstrated with the simulation, using the Spalart–Allmaras turbulence model, of the vertical tail buffeting of an F/A‐18 aircraft configuration and the comparison of the obtained numerical results with flight test data. Copyright © 2014 John Wiley & Sons, Ltd.
In this work, a compressible Reynolds-Averaged Navier Stokes (RANS) solver is extended to investigate the aerodynamics of a micro-scale coaxial rotor configuration in hover. This required the following modifications to the solver: implementation of a time-accurate low Mach preconditioner, implementation of a sliding mesh interface boundary condition, improvements in the grid connec-tivity and parallelization of the code. First, an extensive validation study on the prediction capability of the solver is performed on a hovering micro-scale single rotor, for which performance data and wake characteristics have been measured experimentally. The thrust and power are reasonably well predicted for different leading and trailing geometries. Blunt leading edge geometries show poorer performance compared to the sharp leading edge geometries; the simulations show that this is mainly because of the large pressure drag acting at the blunt front. The tip vortex trajectory and velocity profiles are also well captured. The predicted swirl velocities in the wake for the micro-rotor are found to be significantly larger as compared to those for a full-scale rotor, which could be one of the reasons for additional power loss in the smaller scale rotors. The use of twist and taper is studied computationally and is seen to improve the performance of micro-rotor blades. Next, the solver is applied to simulate the aerodynamics of a full-scale coax-ial rotor configuration in hover, for which performance data is available from experiments. The global quantities such as thrust and power are predicted reasonably well. In the torque trimmed situation, the top rotor shares significant percentage of the total thrust at lower thrust levels, which decreases to about 55% of the total thrust at higher thrust values. The simulations reveal that the interaction between the rotor systems is seen to generate significant impulses in the instantaneous thrust and power. The characteristic signature of this impulse is explained in terms of the blade thickness effect and loading effect, as well as blade-vortex interactions for the bottom rotor (wake effect). Finally, the RANS solver is applied to investigate the aerodynamics of a micro-scale coaxial rotor configuration in hover. The overall performance is well predicted. The interaction between the rotor systems is again seen to generate 3-8% fluctuation in the instantaneous thrust and power. The wake effect in the simulation is seen to be very prominent and the phasing of the impingement of the tip vortex from the top rotor upon the bottom rotor plays a significant role in the amount of unsteadiness on the bottom rotor. Interaction of the top rotor vortex and inboard sheet with the bottom rotor results in significant shedding on the bottom rotor blade, and this is believed to be caused by the of sharp leading edge geometry. Significant blade-vortex and vortex-vortex interactions are observed for coaxial systems.
a b s t r a c tThe use of a shroud is known to improve performance. In this work, the flow physics and performance of shrouded turbines is assessed by solving the Reynolds Averaged NaviereStokes equations supplemented with a transition model. Shroud geometries are evaluated for their augmentation of mass flow through the turbine. Initial assessments are performed using axisymmetric calculations of annular wings with high-lift airfoils as cross sections. The mass flow amplification factor is defined as a performance parameter and is found to increase nearly linearly with radial lift force. From a selection of considered airfoils, the Selig S1223 high-lift airfoil is found to best promote mass flow rate. Full three-dimensional simulations of shrouded wind turbines are performed for selected shroud geometries. The results are compared to open turbine solutions. Augmentation ratios of up to 1.9 are achieved. Peak augmentation occurs at the highest wind speed for which the flow over the blade stays attached. Flowfields are examined in detail and the following aspects are investigated: regions with flow separation, the development of velocity profiles, and the interaction between the turbine wake and shroud boundary layer. The sensitivity of the solutions to rotation rate is examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.