To conclude, anti-PLA2R and enhanced glomerular PLA2R staining are found in more than two-thirds of Indian PMN cases. A reduction in the anti-PLA2R titer correlated with response to therapy.
Drugs targeting β-cells have provided new options in the management of T2DM; however, their role in β-cell regeneration remains elusive. The recent emergence of cell-based therapies such as autologous bone marrow-derived mesenchymal stem cells (ABM-MSCs) and mononuclear cells (ABM-MNCs) seems to offer a pragmatic approach to augment β-cell function/mass. This study aims to examine the efficacy and safety of ABM-MSC and ABM-MNC transplantation in T2DM and explores alterations in glucose-insulin homeostasis by metabolic studies. Thirty patients of T2DM with duration of disease ≥5 years, receiving triple oral antidiabetic drugs along with insulin (≥0.4 IU/Kg/day) with HbA1c ≤7.5%(≤58.0 mmol/mol), were randomized to receive ABM-MSCs or ABM-MNCs through targeted approach and a sham procedure (n = 10 each). The primary endpoint was a reduction in insulin requirement by ≥50% from baseline, while maintaining HbA1c <7.0% (<53.0 mmol/mol) during 1-year follow-up. Six of 10 (60%) patients in both the ABM-MSC and ABM-MNC groups, but none in the control group, achieved the primary endpoint. At 12 months, there was a significant reduction in insulin requirement in ABM-MSC (P < 0.05) and ABM-MNC groups (P < 0.05), but not in controls (P = 0.447). There was a significant increase in second-phase C-peptide response during hyperglycemic clamp in the ABM-MNC (P < 0.05) group, whereas a significant improvement in insulin sensitivity index (P < 0.05) accompanied with an increase in insulin receptor substrate-1 gene expression was observed in the ABM-MSC group. In conclusion, both ABM-MSCs and ABM-MNCs result in sustained reduction in insulin doses in T2DM. Improvement in insulin sensitivity with MSCs and increase in C-peptide response with MNCs provide newer insights in cell-based therapies.
In NIST refractory IMN, both TAC* and MPR are comparable, but with different adverse effect profile. PLA2 R Ab has a very good association with proteinuria, and should be regularly monitored on clinical follow-up.
Vitamin D deficiency associates with mortality in patients with CKD, and vitamin D supplementation might mitigate cardiovascular disease risk in CKD. In this randomized, double-blind, placebo-controlled trial, we investigated the effect of cholecalciferol supplementation on vascular function in 120 patients of either sex, aged 18-70 years, with nondiabetic CKD stage 3-4 and vitamin D deficiency (serum 25-hydroxyvitamin D ≤20 ng/ml). We randomized patients using a 1:1 ratio to receive either two directly observed oral doses of cholecalciferol (300,000 IU) or matching placebo at baseline and 8 weeks. The primary outcome was change in endothelium-dependent brachial artery flow-mediated dilation at 16 weeks. Secondary outcome measures included changes in pulse wave velocity and circulating biomarkers. Cholecalciferol supplementation significantly increased endothelium-dependent brachial artery flow-mediated dilation at 16 weeks, whereas placebo did not (between-group difference in mean change: 5.49%; 95% confidence interval, 4.34% to 6.64%; <0.001). Intervention also led to significant favorable changes in pulse wave velocity and circulating IL-6 levels. Thus, in nondiabetic patients with stage 3-4 CKD and vitamin D deficiency, vitamin D supplementation may improve vascular function. This study is registered with the Clinical Trials Registry of India (no.: CTRI/2013/05/003648).
1,2,4-triazole is an important nucleus present in a large number of compounds. More than thirty-five compounds containing this nucleus are introduced into the market. 1,2,4-triazole nucleus is stable to metabolism and acts as an important pharmacophore by interacting at the active site of a receptor as hydrogen bond acceptor and as a donor. Due to its polar nature, the triazole nucleus can increase the solubility of the ligand and it can significantly improve the pharmacological profile of the drug. A large number of 1,2,4-triazole derivatives are reported to possess a wide range of bioactivities including anti-cancer activity. This review article describes the role of 1,2,4-triazole nucleus in different types of anti-cancer agents such as nucleoside based anti-cancer agents, kinase inhibitors, tubulin modulators, aromatase and steroid sulfatase inhibitors, methionine aminopeptidase inhibitors, tankyrase inhibitors and metal complex based anti-cancer agents. It is expected that the current review article will provide insight into various ligand-receptor interactions and help in the rational design and development of novel 1,2,4-triazole based anti-cancer drugs with improved selectivity for cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.