The available data on climate change over the past century indicate that the Earth is warming. Important biological events, including changes in plant phenology, have been reported in many parts of the world. We have explored some of these phenological changes in more than 650 temperate species, which have indicated the average advancement of 1.9 days per decade in spring events and average delay of 1.4 days per decade in autumnal events. Thus the average length of the growing season has extended by 3.3 days per decade.
Background. Schima wallichii is a highly valuable tree of tropical forest in north-east Himalaya region that grows naturally in a wide range of altitudes between 750 and 2400 m asl with varying environments. Flowering phenology of tropical tree species at population level is generally ignored and therefore a detailed knowledge of flowering and fruiting patterns of important multipurpose tree species is critical to the successful management of forest genetic resources. Materials and Methods. The study was conducted at two different altitudes (i.e., 750 m and 900 m asl) in the tropical semideciduous forest of north-east Himalaya. The floral phenology including flowering synchrony in the populations, anthesis, anther dehiscence, stigma receptivity, pollinators visitation frequency, and mating system including index of self-incompatibility were worked out in Schima wallichii according to the ear-marked standard methods given by various scientists for each parameter. Results. The flowering period in Schima wallichii varied from 33 to 42 days with mean synchrony of 0.54 to 0.68 between the populations. The stigma was receptive up to 2.5 days only and showed slightly protandrous type of dichogamy. Average pollen production ranged between 6.90 × 107 pollen per tree in 2007 and 15.49 × 108 pollen per tree in 2011. A three-year masting cycle was noticed in this species. The frequency of visitation of honey bees was fairly high (5.2 ± 1.12 visits/flower/hour) as compared to other pollinators. The hand pollination revealed maximum fruit (74.2 ± 5.72%) and seed (70.8 ± 7.46%) settings. Conclusions. The variation in flowering phenology and pollen yield individually and annually along with temporal separation in anther dehiscence and pollinator's visitation cause pollen limited reproduction, which ultimately influences the reproductive success in Schima wallichii.
Based on a seven-year study of pollen production and release in two different natural populations of Cedrus deodara from Garhwal Himalaya, India, we determined that pollen output follows a two-year cycle. Pollen productivity determinations considered various sources of variability, including the number of pollen strobili per branch, strobili per tree, microsporophylls per tree and pollen grains per tree. Each of these parameters revealed significant year-to-year and population effects. Microsporangium dehiscence took from 2.5 to 3.5 days. Maximum dehiscence was observed between 12:00 and 14:00 h, which coincides with diurnal highest temperature and lowest relative humidity. Annual production of pollen per tree varied from averages of 4.7 x 10(9), 7.2 x 10(9) and 5.1 x 10(9) in years of low production, with alternate high years, producing 12.6 x 10(9), 14.1 x 10(9), 13.3 x 10(9) and 14.0 x 10(9) pollen grains per tree. Annual pollen production in individual trees of C. deodara ranged from 1.4 x 10(9) to 22.3 x 10(9).
Microsporangium dehiscence, pollen production and dispersal were studied in Himalayan cedar (Cedrus deodara) during 1998 and 1999. Microsporangium dehiscence showed diurnal periodicity and was found to be related to air temperature and relative air humidity, with a strobilus taking 2 d to dehisce completely in warmer conditions and 3 d in cooler ones. The frequency of flowering in C. deodara was highly variable during the two successive years; however, cyclical production of pollen grains was observed in 50% of the trees. The maximum concentration of pollen grains in the air was found between 1200 and 1600 h, and this period was also noted to be the best time for pollination. Studying migration of pollen grains from isolated single trees in three directions showed that migration was not uniform in all directions. Long-distance transport of pollen grains was observed in the downhill direction. However, in the uphill and horizontal directions grains could travel only up to 97.5 and l95.1 m, respectively, and the frequency of pollen grains to the source frequency at these distances was only 1.9 and 2-5%, respectively. The results suggest that an isolation barrier of 190 m may be considered as a minimum for the management of deodar seed orchards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.