Polyaniline doped with different protonic acids were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which confirms the amorphous nature and acid doping, respectively. Electrical conduction in these samples has been studied through the measurement of I-V characteristics at room temperature as well as in the temperature range from 313 K to 413 K. So obtained characteristic curves were found to be nonlinear. The conductivity of phosphoric acid doped polyaniline sample is higher as compared to HCl doped polyaniline and pure polyanihne. Temperature dependence of conductivity suggests a semiconducting nature with increase in temperature. Activation energies have been found to be 50.86, 25.74 and 21.05 meV for pure polyanihne (base), polyanihne doped with hydrochloric, phosphoric acid, respectively.
Pure and oxalic acid doped conducting polymers (polyaniline and polypyrrole) were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through Scanning Electron Microscopy (SEM), which provides information about the surface topography of polymers. I-V characteristics have been recorded at room temperature as well as in the temperature range from 313 K to 463 K. So obtained characteristic curves were found to be linear. Temperature dependence of conductivity suggests a semiconducting nature in polyaniline samples with increase in temperature, whereas oxalic acid doped polypyrrole sample suggests a transition from semiconducting to metallic nature with the increase of temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.