Holographic tomography (HT) is an advanced label-free optical
microscopic imaging method used for biological studies. HT uses
digital holographic microscopy to record the complex amplitudes of a
biological sample as digital holograms and then numerically
reconstruct the sample’s refractive index (RI) distribution in three
dimensions. The RI values are a key parameter for label-free
bio-examination, which correlate with metabolic activities and
spatiotemporal distribution of biophysical parameters of cells and
their internal organelles, tissues, and small-scale biological
objects. This article provides insight on this rapidly growing HT
field of research and its applications in biology. We present a review
summary of the HT principle and highlight recent technical advancement
in HT and its applications.
Quantitative Phase Imaging (QPI) provides unique means for the imaging of biological or technical microstructures, merging beneficial features identified with microscopy, interferometry, holography, and numerical computations. This roadmap article reviews several digital holography-based QPI approaches developed by prominent research groups. It also briefly discusses the present and future perspectives of 2D and 3D QPI research based on digital holographic microscopy, holographic tomography, and their applications.
Indirect-imaging methods involve at least two steps, namely optical recording and computational reconstruction. The optical-recording process uses an optical modulator that transforms the light from the object into a typical intensity distribution. This distribution is numerically processed to reconstruct the object’s image corresponding to different spatial and spectral dimensions. There have been numerous optical-modulation functions and reconstruction methods developed in the past few years for different applications. In most cases, a compatible pair of the optical-modulation function and reconstruction method gives optimal performance. A new reconstruction method, termed nonlinear reconstruction (NLR), was developed in 2017 to reconstruct the object image in the case of optical-scattering modulators. Over the years, it has been revealed that the NLR can reconstruct an object’s image modulated by an axicons, bifocal lenses and even exotic spiral diffractive elements, which generate deterministic optical fields. Apparently, NLR seems to be a universal reconstruction method for indirect imaging. In this review, the performance of NLR isinvestigated for many deterministic and stochastic optical fields. Simulation and experimental results for different cases are presented and discussed.
Data acquisition and processing is a critical issue for high-speed applications, especially in three-dimensional live cell imaging and analysis. This paper focuses on sparse-data sample rotation tomographic reconstruction and analysis with several noise-reduction techniques. For the sample rotation experiments, a live Candida rugosa sample is used and controlled by holographic optical tweezers, and the transmitted complex wavefronts of the sample are recorded with digital holographic microscopy. Three different cases of sample rotation tomography were reconstructed for dense angle with a step rotation at every 2°, and for sparse angles with step rotation at every 5° and 10°. The three cases of tomographic reconstruction performance are analyzed with consideration for data processing using four noise-reduction techniques. The experimental results demonstrate potential capability in retaining the tomographic image quality, even at the sparse angle reconstructions, with the help of noise-reduction techniques.
Holographic tomography (HT) is a three-dimensional quantitative imaging method used to study the biophysical parameters of cells or tissues at its subcellular level. The exciting label-free HT techniques and its biomedical applications will be illustrated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.