An increasing penetration of EVs and their charging impose challenges to the energy grid stability. As a consequence, an optimal management of EV charging in parking lots becomes essential. This work presents an approach of a cooperative control of charging stations based on a stochastic optimization model for the energy management of a group of charging stations. Uncertainties regarding the number of charging EVs at each time step are modelled using a Markovian process, while the probability mass function was generated using a Monte Carlo simulation. Furthermore, the concept prioritizes the exploitation of local renewable resources and energy storage for EV charging to the import of electrical energy from the grid. The stochastic optimization model was integrated into our own developed Stochastic Optimization Software Framework (SOFW), which deploys the application as Model Predictive Control (MPC) in the real-time scenario using dynamic programming. The cooperative control of charging stations presented in this work was evaluated succesfully with a variety of EV driving scenarios. The approach will be validated on the field in a car park of a DSO company including renewable generation and energy storage system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.