In the current ongoing crisis, people mostly rely on mobile phones for all the activities, but query analysis and mobile data security are major issues. Several research works have been made on efficient detection of antipatterns for minimizing the complexity of query analysis. However, more focus needs to be given to the accuracy aspect. In addition, for grouping similar antipatterns, a clustering process was performed to eradicate the design errors. To address the above-said issues and further enhance the antipattern detection accuracy with minimum time and false positive rate, in this work, Random Forest Bagging X-means SQL Query Clustering (RFBXSQLQC) technique is proposed. Different patterns or queries are initially gathered from the input SQL query log, and bootstrap samples are created. Then, for each pattern, various weak clusters are constructed via X-means clustering and are utilized as the weak learner (clusters). During this process, the input patterns are categorized into different clusters. Using the Bayesian information criterion, the similarity measure is employed to evaluate the similarity between the patterns and cluster weight. Based on the similarity value, patterns are assigned to either relevant or irrelevant groups. The weak learner results are aggregated to form strong clusters, and, with the aid of voting, a majority vote is considered for designing strong clusters with minimum time. Experiments are conducted to evaluate the performance of the RFBXSQLQC technique using the IIT Bombay dataset using the metrics like antipattern detection accuracy, time complexity, false-positive rate, and computational overhead with respect to the differing number of queries. The results revealed that the RFBXSQLQC technique outperforms the existing algorithms by 19% with pattern detection accuracy, 34% minimized time complexity, 64% false-positive rate, and 31% in terms of computational overhead.
Discovery of antipatterns from arbitrary SQL query log depends on the static code analysis used to enhance the quality and performance of software applications. The existence of antipatterns reduces the quality and leads to redundant SQL statements. SQL log includes a large load on the database and it is difficult for an analyst to extract large patterns in a minimal time. Existing techniques which discover antipatterns in SQL query face a lot of innumerable challenges to discover the normal sequences of queries within the log. In order to discover the antipatterns in the log, an efficient technique called Brown infomax boosted SQL query clustering (BIBSQLQC) technique is introduced. Initially, the number of patterns (i.e. queries) are extracted from the SQL query log. After extracting the patterns, the ensemble clustering process is carried out to find out the antipatterns from the given query log. The Brown infomax boost clustering is an ensemble learning method for grouping the patterns by constructing several weak learners. The Brown clustering is used as a weak learner for partitioning the patterns into 'k' number of clusters based on the Euclidean distance measure. Then the weak learner merges the two clusters with maximum information gained to minimize the time complexity. The clustering results of weak learners are combined into strong results with minimal error rate (ER). By this way, the antipattern in the SQL query log is detected with a higher accuracy. Experimental evaluation is conducted with different parameters namely detection accuracy (DA), false positive rate (FPR) and time complexity (TC) using the two SQL query log data-sets (DS). The experimental result shows that, the BIBSQLQC technique achieves higher DA with lower TC and FPR than the conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.