Advancing an efficient coverage path planning in robots set up for application such as cleaning, painting and mining are becoming more crucial. Such drive in the coverage path planning field proposes numerous techniques over the past few decades. However, the proposed approaches were only applied and tested with a fixed morphological robot in which the coverage performance was significantly degraded in a complex environment. To this end, an A-star based zigzag global planner for a novel self-reconfigurable Tetris inspired cleaning robot (hTetro) presented in this paper. Unlike the traditional A-star algorithm, the presented approach can generate waypoints in order to cover the narrow spaces while assuming appropriate morphology of the hTtero robot with the objective of maximizing the coverage area. We validated the efficiency of the proposed planning approach in the Robot Operation System (ROS) Based simulated environment and tested with the hTetro robot in real-time under the controlled scenarios. Our experiments demonstrate the efficiency of the proposed coverage path planning approach resulting in superior area coverage performance in all considered experimental scenarios.
The efficiency of autonomous systems that tackle tasks such as home cleaning, agriculture harvesting, and mineral mining depends heavily on the adopted area coverage strategy. Extensive navigation strategies have been studied and developed, but few focus on scenarios with reconfigurable robot agents. This paper proposes a navigation strategy that accomplishes complete path planning for a Tetris-inspired hinge-based self-reconfigurable robot (hTetro), which consists of two main phases. In the first phase, polyomino form-based tilesets are generated to cover the predefined area based on the tiling theory, which generates a series of unsequenced waypoints that guarantee complete coverage of the entire workspace. Each waypoint specifies the position of the robot and the robot morphology on the map. In the second phase, an energy consumption evaluation model is constructed in order to determine a valid strategy to generate the sequence of the waypoints. The cost value between waypoints is formulated under the consideration of the hTetro robot platform’s kinematic design, where we calculate the minimum sum of displacement of the four blocks in the hTetro robot. With the cost function determined, the waypoint sequencing problem is then formulated as a travelling salesman problem (TSP). In this paper, a genetic algorithm (GA) is proposed as a strong candidate to solve the TSP. The GA produces a viable navigation sequence for the hTetro robot to follow and to accomplish complete coverage tasks. We performed an analysis across several complete coverage algorithms including zigzag, spiral, and greedy search to demonstrate that TSP with GA is a valid and considerably consistent waypoint sequencing strategy that can be implemented in real-world hTetro robot navigations. The scalability of the proposed framework allows the algorithm to produce reliable results while navigating within larger workspaces in the real world, and the flexibility of the framework ensures easy implementation of the algorithm on other polynomial-based shape shifting robots.
Whilst Polyomino tiling theory has been extensively studied as a branch of research in mathematics, its application has been largely confined to multimedia, graphics and gaming domains. In this paper, we present a novel application of Tromino tiling theory, a class of Polyomino with three cells in the context of a reconfigurable floor cleaning robot, hTromo. The developed robot platform is able to automatically generate a global tiling set required to cover a defined space while leveraging on the Tromino tiling theory. Specifically, we validated the application of five Tromino tiling theorems with our hTromo robot. Experiments performed clearly demonstrate the efficacy of the proposed approach resulting in very high levels of area coverage performance in all considered experimental cases. This paper also presents the system architecture of our hTromo robot and a detailed description of the five tiling theorems applied in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.