Effect of low doses of gamma irradiation (0.25, 0.5 and 1.0 kGy) on protein oxidation, profile, solubility, ROS scavenging and in vivo bioavailability of minerals in black (BS1) and yellow (BRAGG) soybean varieties were investigated. Increased oxidation, altered protein profile with decreased solubility was observed higher in BRAGG compared with BS1. The most significant ROS scavenging effect, antioxidant activity, least phytate content and improved bioavailability was found at 0.5 kGy in BS1 than BRAGG due to anthocyanins, and phenolics. Still 1.0 kGy is considered as toxicologically and microbiologically safe but it causes biochemical alterations and thus 0.5 kGy can be the optimum dose with enriched nutraceutical properties.
Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.
Designing low-phytate crops without affecting the developmental process in plants had led to the identification of gene in soybean. The gene was identified and a partial gene sequence was cloned from popular Indian soybean genotype Pusa16. Conserved domains and motifs unique to ABC transporters were identified in the 30 homologous sequences retrieved by BLASTP analysis. The homologs were analyzed for their evolutionary relationship and physiochemical properties. Conserved domains, transmembrane architecture and secondary structure of ABCC5 were predicted with the aid of computational tools. Analysis identified 53 alpha helices and 31 beta strands, predicting 60% residues in alpha conformation. A three-dimensional (3D) model forABCC5 was developed based on 5twv.1.B () template homology to gain better insight into its molecular mechanism of transport and sequestration. Spatio-temporal real-time PCR analysis identified mid-to-late seed developmental stages as the time window for the maximum gene expression, a potential target stage for phytate reduction. Results of this study provide valuable insights into the structural and functional characteristics of, which may be further utilized for the development of nutritionally enriched low-phytate soybean with improved mineral bioavailability.
Microgreens belong to a class of functional foods with valuable nutritional elements and diverse health benefits when consumed as food supplements. Its consumption has increased sharply due to the abundance of different health-promoting components than their mature plants. The present study investigated the growth conditions and nutritional profiles of six crops (mungbean, lentil, red radish, pearl-millet, mustard, and red cabbage) as microgreens grown under the light with a 16 h light/8 h dark cycle. Firstly, the optimum temperature and the day of harvesting of each of the microgreens for their maximum yield were standardized. The optimum temperature ranged from 24 to 28 °C, and the best stage for their harvesting ranged from the 6th to 13th day for all six microgreens species. Physiological parameters such as height, yield, color, moisture content, seed weight to fresh weight (FW) ratio, and FW to dry weight (DW) were also estimated. All the microgreens were analyzed for the total phenolics content, total anthocyanin content, vitamin C, free radical scavenging activity, dietary fiber, and phytic acid contents at the harvesting stage. Total phenolics, total anthocyanin, and vitamin C contents ranged from 55 to 1240 mg/100 g, 25 to 186 mg/100 g, and 22 to 86 mg/100 g, respectively, in the studied microgreens. Red cabbage and pearl-millet microgreens accumulated higher phenolics than other studied microgreens, while total anthocyanin content was higher in red radish and pearl-millet microgreens. Vitamin C content was recorded as highest in red cabbage microgreens. DPPH-based free radical scavenging activity ranged from 62–84% and was highest in red cabbage microgreens. All the microgreens were also analyzed for their dietary fiber (DF) content which ranged from 2.5–12.5% and was recorded as maximum in pearl millet microgreens. The findings of this study offer helpful information on the growth circumstances necessary to produce microgreens with the greatest nutrient and health benefits.
Bacillus thuringiensis insecticidal proteins (Bt ICPs) are reliable and valuable options for pest management in crops. Protein engineering of Bt ICPs is a competitive alternative for resistance management in insects. The primary focus of the study was to reiterate the translational utility of a protein-engineered chimeric Cry toxin, Cry1AcF, for its broad spectrum insecticidal efficacy using molecular modeling and docking studies. In-depth bioinformatic analysis was undertaken for structure prediction of the Cry toxin as the ligand and aminopeptidase1 receptors (APN1) from Helicoverpa armigera (HaAPN1) and Spodoptera litura (SlAPN1) as receptors, followed by interaction studies using protein-protein docking tools. The study revealed feasible interactions between the toxin and the two receptors through H-bonding and hydrophobic interactions. Further, molecular dynamics simulations substantiated the stability of the interactions, proving the broad spectrum efficacy of Cry1AcF in controlling H. armigera and S. litura. These findings justify the utility of protein-engineered toxins in pest management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.