Abstract. We study a variant of the classical circuit-lower-bound problems: proving lower bounds for sampling distributions given random bits. We prove a lower bound of 1 − 1/n Ω(1) on the statistical distance between (i) the output distribution of any small constant-depth (a.k.a. AC 0 ) circuit f : {0, 1} poly(n) → {0, 1} n , and (ii) the uniform distribution over any code C ⊆ {0, 1} n that is "good", i.e. has relative distance and rate both Ω(1). This seems to be the first lower bound of this kind. We give two simple applications of this result: (1) any data structure for storing codewords of a good code C ⊆ {0, 1} n requires redundancy Ω(log n), if each bit of the codeword can be retrieved by a small AC 0 circuit; (2) for some choice of the underlying combinatorial designs, the output distribution of Nisan's pseudorandom generator against AC 0 circuits of depth d cannot be sampled by small AC 0 circuits of depth less than d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.