Previous experiments by our group have indicated the regenerative effects of a spring water (Comano), which was possibly associated with the native non-pathogenic bacterial flora. The present study aimed to confirm these regenerative properties in a human ex vivo experimental model in the context of physiological wound healing. Human 6-mm punch skin biopsies harvested during plastic surgery sessions were injured in their central portion to induce skin loss and were cultured in either conventional medium (controls) or medium powder reconstituted with filtered Comano spring water (treated samples). At 24, 48 and 72 h the specimens were observed following staining with hematoxylin and eosin, Picrosirius Red, orcein and anti-proliferating cell nuclear antigen. Compared with the controls, the treated samples exhibited reduced overall cell infiltration, evidence of fibroblasts, stimulation of cell proliferation and collagen and elastic fiber regeneration. In the spring water, in addition to 12 resident non-pathogenic bacterial strains exhibiting favorable metabolic activities, more unknown non-pathogenic species are being identified by genomic analysis. In the present study, the efficacy of this ‘germ-free’, filtered spring water in wound regeneration was indicated. Thus, the Comano spring water microbiota should be acknowledged for its regenerative properties.
Plastic surgery is transitioning from a fine craftsmanship to a regenerative science. In wound healing, the role of microorganisms is no longer considered to be just counteracting, but also promoting. Furthermore, host-microbe interactions are essential for numerous aspects of normal mammalian physiology, from metabolic activity to immune homeostasis. Each area of the human body hosts a unique microbial community, and the composition of microbiota is dependent on the host, age and the anatomical area, and it changes according to the characteristics of the microenvironment. Every squared centimeter of skin contains ~1 billion bacteria. The majority of microorganisms of the skin are commensal or temporary passing members. Skin flora mechanisms interacting or influencing the human physical skin barrier are not well defined. Resident skin bacteria provide the first line of defence against potentially dangerous pathogens and produce small molecules that influence their microbial neighbours. Furthermore, the microbiota activates and assists innate immunity and influences adaptive immunity. Various types of immune and non-immune cells contribute to wound healing. The proliferative phase of wound healing is inversely proportional to the extent of the post-traumatic inflammatory reaction. Topical bacterial lipopolysaccharide application markedly affects wound healing by accelerating the resolution of inflammation, increasing macrophage infiltration, enhancing collagen synthesis and altering the secretion of mediators involved in skin regeneration. Various studies have investigated the biological contents of thermal spring waters, and their anti-inflammatory and immune protective roles. In addition, the regenerative properties of thermal spring waters were analysed in an experimental animal wound model. The areas treated with thermal water healed faster than the areas treated with conventional dressings, and exhibited a collagen and elastic fiber network comparable with the normal skin. Thus, the microbial environment may be considered as a potential tool in regenerative medicine and surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.