The epidermis forms an essential barrier against a variety of insults. The overall goal of this study was to shed light not only on the effects of accidental epidermal injury, but also on the mechanisms that support laser skin resurfacing with intra-epidermal focal laser-induced photodamage, a widespread medical practice used to treat a range of skin conditions. To this end, we selectively photodamaged a single keratinocyte with intense, focused and pulsed laser radiation, triggering Ca2+ waves in the epidermis of live anesthetized mice with ubiquitous expression of a genetically encoded Ca2+ indicator. Waves expanded radially and rapidly, reaching up to eight orders of bystander cells that remained activated for tens of minutes, without displaying oscillations of the cytosolic free Ca2+ concentration (${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$). By combining in vivo pharmacological dissection with mathematical modeling, we demonstrate that Ca2+ wave propagation depended primarily on the release of ATP, a prime damage-associated molecular patterns (DAMPs), from the hit cell. Increments of the ${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$ in bystander cells were chiefly due to Ca2+ release from the endoplasmic reticulum (ER), downstream of ATP binding to P2Y purinoceptors. ATP-dependent ATP release though connexin hemichannels (HCs) affected wave propagation at larger distances, where the extracellular ATP concentration was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases, whereas pannexin channels had no role. Bifurcation analysis suggests basal keratinocytes have too few P2Y receptors (P2YRs) and/or phospholipase C (PLC) to transduce elevated extracellular ATP levels into inositol trisphosphate (IP3) production rates sufficiently large to sustain ${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$ oscillations.
Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.
BACKGROUND: The mammalian skin, the body's largest single organ, is a highly organized tissue that forms an essential barrier against dehydration, pathogens, light and mechanical injury. Damage triggers perturbations of the cytosolic free Ca2+ concentration ([Ca2+]c) that spread from cell to cell (known as intercellular Ca2+ waves) in different epithelia, including epidermis. Ca2+ waves are considered a fundamental mechanism for coordinating multicellular responses, however the mechanisms underlying their propagation in the damaged epidermis are incompletely understood. AIM OF THE PROJECT: To dissect the molecular components contributing to Ca2+ wave propagation in murine model of epidermal photodamage. METHODS: To trigger Ca2+ waves, we used intense and focused pulsed laser radiation and targeted a single keratinocyte of the epidermal basal layer in the earlobe skin of live anesthetized mice. To track photodamage-evoked Ca2+ waves, we performed intravital multiphoton microscopy in transgenic mice with ubiquitous expression of the sensitive and selective Ca2+ biosensor GCaMP6s. To dissect the molecular components contributing to Ca2+ wave propagation, we performed in vivo pharmacological interference experiments by intradermal microinjection of different drugs. EXPERIMENTAL RESULTS: The major effects of drugs that interfere with degradation of extracellular ATP or P2 purinoceptors suggest that Ca2+ waves in the photodamaged epidermis are primarily due to release of ATP from the target cell, whose plasma membrane integrity was compromised by laser irradiation. The limited effect of the Connexin 43 (Cx43) selective inhibitor TAT-Gap19 suggests ATP-dependent ATP release though connexin hemichannels (HCs) plays a minor role, affecting Ca2+ wave propagation only at larger distances, where the concentration of ATP released from the photodamaged cell was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases. The ineffectiveness of probenecid suggests pannexin channels have no role. As GCaMP6s signals in bystander keratinocytes were augmented by exposure to the Ca2+ chelator EGTA in the extracellular medium, the corresponding transient increments of the [Ca2+]c should be ascribed primarily to Ca2+ release from the ER, downstream of ATP binding to P2Y purinoceptors, with Ca2+ entry through plasma membrane channels playing a comparatively negligible role. The effect of thapsigargin (a well-known inhibitor of SERCA pumps) and carbenoxolone (a recently recognized inhibitor of Ca2+ release through IP3 receptors) support this conclusion. CONCLUSIONS: The one presented here is an experimental model for accidental skin injury that may also shed light on the widespread medical practice of laser skin resurfacing, used to treat a range of pathologies from photodamage and acne scars to hidradenitis suppurativa and posttraumatic scarring from basal cell carcinoma excision. The results of our experiments support the notion that Ca2+ waves reflect chiefly the sequential activation of bystander keratinocytes by the ATP released through the compromised plasma membrane of the cell hit by laser radiation. We attributed the observed increments of the [Ca2+]c chiefly to signal transduction through purinergic P2Y receptors. Several studies have highlighted fundamental roles of P2Y receptors during inflammatory and infectious diseases, and the initial phase of wound healing involves acute inflammation. In addition, hyaluronan is a major component of the extracellular matrix and its synthesis is rapidly upregulated after tissue wounding via P2Y receptor activation. It is tempting to speculate that response coordination after injury in the epidermis occurs via propagation of the ATP-dependent intercellular Ca2+ waves described in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.