Ovarian cancer (OC) shows the highest mortality rate among gynecological malignancies and, because of the absence of specific symptoms, it is frequently diagnosed at an advanced stage, mainly due to the lack of specific and early biomarkers, such as those based on cancer molecular signature identification. Indeed, although significant progress has been made toward improving the clinical outcome of other cancers, rates of mortality for OC are essentially unchanged since 1980, suggesting the need of new approaches to identify and characterize the molecular mechanisms underlying pathogenesis and progression of these malignancies. In addition, due to the low response rate and the high frequency of resistance to current treatments, emerging therapeutic strategies against OC focus on targeting single factors and pathways specifically involved in tumor growth and metastasis. To date, loss-of-function screenings are extensively applied to identify key drug targets in cancer, seeking for more effective, disease-tailored treatments to overcome lack of response or resistance to current therapies. We review here the information relative to essential genes and functional pathways recently discovered in OC, often strictly interconnected with each other and representing promising biomarkers and molecular targets to treat these malignancies.
The histone lysine methyltransferase DOT1L (DOT1-like histone lysine methyltransferase) is responsible for the epigenetic regulation of gene expression through specific methylation of lysine79 residue of histone H3 (H3K79) in actively transcribed genes. Its normal activity is crucial for embryonic development and adult tissues functions, whereas its aberrant functioning is known to contribute to leukemogenesis. DOT1L is the only lysine methyltransferase that does not contain a SET domain, which is a feature that allowed the development of selective DOT1L inhibitors that are currently investigated in Phase I clinical trials for cancer treatment. Recently, abnormal expression of this enzyme has been associated with poor survival and increased aggressiveness of several solid tumors. In this review evidences of aberrant DOT1L expression and activity in breast, ovarian, prostate, colon, and other solid tumors, and its relationships with biological and clinical behavior of the disease and response to therapies, are summarized. Current knowledge of the structural basis of DOT1L ability to regulate cell proliferation, invasion, plasticity and stemness, cell cycle progression, cell-to-cell signaling, epithelial-to-mesenchymal transition, and chemoresistance, through cooperation with several molecular partners including noncoding RNAs, is also reviewed. Finally, available options for the treatment of therapeutically challenging solid tumors by targeting DOT1L are discussed.
From December 2019, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection has spread rapidly, leading to a global pandemic. Little is known about possible relationships between SARS‐CoV‐2 and other viruses in the respiratory system affecting patient prognosis and outcomes. This study aims to characterize respiratory virome profiles in association with SARS‐CoV‐2 infection and disease severity, through the analysis in 89 nasopharyngeal swabs collected in a patient's cohort from the Campania region (Southern Italy). Results show coinfections with viral species belonging to Coronaviridae, Retroviridae, Herpesviridae, Poxviridae, Pneumoviridae, Pandoraviridae, and Anelloviridae families and only 2% of the cases (2/89) identified respiratory viruses.
Background Neuroendocrine neoplasms (NENs) represent a heterogeneous class of rare tumors with increasing incidence. They are characterized by the ability to secrete peptide hormones and biogenic amines but other reliable biomarkers are lacking, making diagnosis and identification of the primary site very challenging. While in some NENs, such as the pancreatic ones, next generation sequencing technologies allowed the identification of new molecular hallmarks, our knowledge of the molecular profile of NENs from other anatomical sites is still poor. Methods Starting from the concept that NENs from different organs may be clinically and genetically correlated, we applied a multi-omics approach by combining multigene panel testing, CGH-array, transcriptome and miRNome profiling and computational analyses, with the aim to highlight common molecular and functional signatures of gastroenteropancreatic (GEP)-NENs and medullary thyroid carcinomas (MTCs) that could aid diagnosis, prognosis and therapy. Results By comparing genomic and transcriptional profiles, ATM-dependent signaling emerged among the most significant pathways at multiple levels, involving gene variations and miRNA-mediated regulation, thus representing a novel putative druggable pathway in these cancer types. Moreover, a set of circulating miRNAs was also selected as possible diagnostic/prognostic biomarkers useful for clinical management of NENs. Conclusions These findings depict a complex molecular and functional landscape of NENs, shedding light on novel therapeutic targets and disease biomarkers to be exploited.
Background Targeting vulnerabilities of cancer cells by inhibiting key regulators of cell proliferation or survival represents a promising way to overcome resistance to current therapies. In breast cancer (BC), resistance to endocrine therapy results from constitutively active or aberrant estrogen receptor alpha (ERα) signaling to the genome. Targeting components of the ERα pathway in these tumors represents, therefore, a rational way toward effective new treatments. Interaction proteomics identified several proteins associated with ERα in BC cells, including epigenetic complexes controlling gene transcription comprising the scaffold protein menin and the histone methyltransferase Dot1L. Methods We combined chromatin immunoprecipitation, transcriptome sequencing, siRNA-mediated gene knockdown (kd), pharmacological inhibition coupled to cellular and functional assays and interaction proteomics in antiestrogen (AE)-sensitive and AE-resistant human BC cell models to: map menin and Dot1L chromatin localization, search for their common and specific target genes, measure the effects of single or combinatorial knockdown or pharmacological inhibition of these proteins on cell proliferation and survival, and characterize their nuclear interactomes. Results Dot1L and menin associate in MCF-7 cells chromatin, where they co-localize in a significant fraction of sites, resulting in co-regulation of genes involved, among others, in estrogen, p53, HIF1α and death receptor signaling, regulation of cell cycle and epithelial-to-mesenchymal transition. Specific inhibitors of the two factors synergize with each other for inhibition of cell proliferation of AE (tamoxifen or fulvestrant)-sensitive and AE-resistant BC cells. Menin and Dot1L interactomes share a sizeable fraction of their nuclear partners, the majority being known BC fitness genes. Interestingly, these include B-WICH and WINAC complexes that share BAZ1B, a bromodomain protein comprising a tyrosine–protein kinase domain playing a central role in chromatin remodeling and transcriptional regulation. BAZ1B kd caused significant inhibition of ERα expression, proliferation and transcriptome changes resulting in inhibition of estrogen, myc, mTOR, PI3K and AKT signaling and metabolic pathways in AE-sensitive and AE-resistant BC cells. Conclusions Identification of a functional interplay between ERα, Dot1L, menin and BAZ1B and the significant effects of their co-inhibition on cell proliferation and survival in cell models of endocrine therapy-resistant BC reveal a new therapeutic vulnerability of these aggressive diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.