The shapes of eukaryotic cells and ultimately the organisms that they form are defined by cycles of mechanosensing, mechanotransduction and mechanoresponse. Local sensing of force or geometry is transduced into biochemical signals that result in cell responses even for complex mechanical parameters such as substrate rigidity and cell-level form. These responses regulate cell growth, differentiation, shape changes and cell death. Recent tissue scaffolds that have been engineered at the micro- and nanoscale level now enable better dissection of the mechanosensing, transduction and response mechanisms.
To investigate how substrate properties influence stem-cell fate, we cultured single human epidermal stem cells on polydimethylsiloxane (PDMS) and polyacrylamide (PAAm) hydrogel surfaces, 0.1 kPa-2.3 MPa in stiffness, with a covalently attached collagen coating. Cell spreading and differentiation were unaffected by polydimethylsiloxane stiffness. However, cells on polyacrylamide of low elastic modulus (0.5 kPa) could not form stable focal adhesions and differentiated as a result of decreased activation of the extracellular-signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) signalling pathway. The differentiation of human mesenchymal stem cells was also unaffected by PDMS stiffness but regulated by the elastic modulus of PAAm. Dextran penetration measurements indicated that polyacrylamide substrates of low elastic modulus were more porous than stiff substrates, suggesting that the collagen anchoring points would be further apart. We then changed collagen crosslink concentration and used hydrogel-nanoparticle substrates to vary anchoring distance at constant substrate stiffness. Lower collagen anchoring density resulted in increased differentiation. We conclude that stem cells exert a mechanical force on collagen fibres and gauge the feedback to make cell-fate decisions.
Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.
Surface adhesion of bacteria generally occurs in the presence of shear stress, and the lifetime of receptor bonds is expected to be shortened in the presence of external force. However, by using Escherichia coli expressing the lectin-like adhesin FimH and guinea pig erythrocytes in flow chamber experiments, we show that bacterial attachment to target cells switches from loose to firm upon a 10-fold increase in shear stress applied. Steered molecular dynamics simulations of tertiary structure of the FimH receptor binding domain and subsequent site-directed mutagenesis studies indicate that shear-enhancement of the FimH-receptor interactions involves extension of the interdomain linker chain under mechanical force. The ability of FimH to function as a force sensor provides a molecular mechanism for discrimination between surface-exposed and soluble receptor molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.