Abstract-In the current study, research on the performance characteristics of an adsorption cooling system supplied by solar energy is presented. The main task for the analyzed system was to ensure cooling load for the non-residential building in cold climate country. A 8.0 kW adsorption thermal cooling system was studied. The system got heat produced by evacuated tube solar collectors. The parametric simulation study was carried using a TRNSYS (Transient Systems Simulation) program to determine the influence of various parameters on the system performance. The dependencies of collector slope and the total absorber area on solar fraction, discarded energy, coefficient of performance, seasonal performance factor were studied. The highest solar fraction, coefficient of performance and seasonal performance factor values were obtained if the collector slope was approximately 30 degrees and the absorber area was 16 m 2 for the analyzed cases. The total primary energy consumption of the system was examined for various cases of primary energy factor for auxiliary heat and consumed electricity. On the basis of the results, it was proposed the expression of total primary energy consumption. The obtained results could be used for the recommendation preparations for decision makers to select a small scale solar cooling adsorption system.
-The installation of a heat storage tank is a very costeffective way to improve the performance and flexibility of a CHP plant. Such a heat storage tank usually accumulates heat by thermal stratification. This phenomenon is caused by the thermal buoyancy because of the difference in temperature between cold and hot water. The heat storage tank may have three operating modes, i. e. charge, discharge and storage in a CHP plant. When CHP units, which charge the heat storage tank, operate at full load, usually only two operation modes occur in the tank, i.e. charge and discharge.The paper presents numerical simulation of heat storage tank operation modes in a CHP plant using PHOENICS -a multipurpose computation fluid dynamics (CFD) software. Twodimensional and three-dimensional transient models were created and solved numerically. Three domain grids were tested. Several charging and discharging processes with different flow rates were simulated. The influence of flow rate on the degree of thermal stratification during charging and discharging processes is analyzed. The computation possibilities and limitations of the numerical experiments are pointed out. Special attention is given to the validation of the numerical solutions. The validation of simulated results is made by comparison with the real data from the heat storage installed in the Hvide Sande CHP plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.