Urban floods have adverse effects on the population and the economy, and they are increasing in frequency and magnitude. The State of Veracruz is the region of Mexico with the highest number of disasters, more than 50% of the total number nationwide, in the 1970–2015 period. During the 1990s, disasters in this region increased from 5 to 10 events per year, mostly in relation to intense rains and floods. This study analyzes the factors that increase the risk of urban floods in the regions: (i) the Pánuco River, (ii) the Papaloapan River, and (iii) the Coatzacoalcos River regions, combining hazard data and estimates of vulnerability factors. The 95th percentile of daily precipitation (P95) is used as a threshold of heavy rain, i.e., the natural hazard. Vulnerability is estimated in terms of the percentage of natural vegetation loss due to changes in land cover and land use in the hydrological basins and the expansion of the urban areas in the regions under study. The risk of flood was compared with records of flood events focusing on the low-frequency variations of risks and disaster activity. The trends in urban flood activity are related to the loss of natural vegetation and deterioration of the basins leading to a loss of infiltration, i.e., larger runoffs. Even when the intensity of precipitation in recent decades remains without clear trends, or shows negative tendencies in the number of intense events, the number of floods is higher mostly because of the deterioration of hydrologic basins. Therefore, the risk of flooding in the state of Veracruz is mainly related to environmental factors that result in vulnerability rather than changes in the trends of extreme precipitation activity. This result means that disaster risk reduction actions should be mainly related to rehabilitation of the basins.
Due to their frequency and magnitude, urban floods affect different regions of the world. For this reason, several methodologies integrate information on hazard (H) and vulnerability (V) using a "Classic" Risk (R) model for risk analysis. However, this combination of variables generally overestimates the risk in places where the frequency of flooding is low. In this work we propose a model that we call Adjusted Risk (AR) that integrates values of urban proximity (p) to bodies of water, as a tool to assess the risk of floods. The comparison between the R and AR models showed a higher efficiency of AR to reproduce the frequency of floods for 210 cities in Veracruz, while R overestimated the level of risk in cities with low frequency of floods. The correlation values associated with the frequency of flood events for a period of 45 years (1970-2015), allow to establish the utility of the AR model to evaluate the risk of urban floods when using different scales of analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.