Duchenne muscular dystrophy (DMD) is a rare, severe, progressive muscle-wasting disease leading to disability and premature death. Patients lack the muscle membrane-stabilizing protein dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach that aims to induce production of partially functional dystrophins. Recently, an AON targeting exon 51 became the first of its class to be approved by the United States regulators [Food and Drug Administration (FDA)] for the treatment of DMD. A unique aspect of the exon-skipping approach for DMD is that, depending on the size and location of the mutation, different exons need to be skipped. This challenge raises a number of questions regarding the development and regulatory approval of those individual compounds. In this study, we present a perspective on those questions, following a European stakeholder meeting involving academics, regulators, and representatives from industry and patient organizations, and in the light of the most recent scientific and regulatory experience.
Duchenne muscular dystrophy is a rare, progressive, muscle-wasting disease leading to severe disability and premature death. Treatment is currently symptomatic, but several experimental therapies are in development. Implemented care standards, validated outcome measures correlating with clinical benefit, and comprehensive information about the natural history of the disease are essential for regulatory approval of any treatment. However, for Duchenne muscular dystrophy and other rare diseases, these requirements are not always in place when potential therapies enter the clinical trial phase. A cooperative effort of stakeholders in Duchenne muscular dystrophy-including representatives from patients' groups, academia, industry, and regulatory agencies-is aimed at addressing this shortfall by identifying strategies to overcome challenges, developing the tools needed, and collecting relevant data. An open and constructive dialogue among European stakeholders has positively affected development of treatments for Duchenne muscular dystrophy; this approach could serve as a paradigm for development of treatments for rare diseases in general.
Haemophilia A and B are rare bleeding disorders. Over the past decades, they have been transformed from debilitating diseases to manageable conditions in the Western world. However, optimizing haemophilia care remains challenging in developing countries. Several challenges and unmet needs remain in the treatment of the haemophilia limiting the QoL of patients. These challenges are now being addressed by extended half‐life recombinant factors, rebalancing and substitution therapies. Gene therapy and genome editing show promise for a definite clinical cure. Here, we provide an overview of new therapeutic opportunities for haemophilia and their advances and limitations from a regulatory perspective. The database on human medicines from the European Medicines Agency (EMA) was used and data from rare disease (orphan) designations and EPARs were retrieved for the analysis. Clinical trial databases were used to query all active studies on haemophilia. Gene therapy medicinal products based on AAV and lentiviral vectors are in development and clinical trials have reported substantial success in ameliorating bleeding tendency in haemophilia patients. The prospect of gene editing for correction of the underlying mutation is on the horizon and has considerable potential. With regard to the benefit of the gene therapy medicinal products, more long‐term efficacy and safety data are awaited. We are entering an era of innovation and abundance in treatment options for those affected by bleeding disorders, but issues remain about the affordability and accessibility to patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.