The information storage and encoding ability of DNA arise from a remarkably simple 4--letter -A, T, G, C nucleobase code. Expanding this DNA 'alphabet' provides information about its function and evolution, and introduces new functionalities into nucleic acids and organisms. Previous efforts relied on the synthetically demanding incorporation of non--canonical bases into nucleosides. Here we report the discovery that a small molecule, cyanuric acid, with three thymine--like faces reprograms the assembly of unmodified poly(adenine) into stable, long and abundant fibers with a unique internal structure. Poly(A) DNA, RNA and PNA all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, bringing together poly(A) triplexes with subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen--bonding molecules can be used to induce the assembly of nucleic acids in water, leading to new structures from inexpensive and readily available materials.
As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.