Numerous studies show that landscape simplification reduces abundance and diversity of natural enemies in agroecosystems, but its effect on natural pest control remains poorly quantified. Further, natural enemy impacts on pest populations have usually been estimated for a limited number of taxa and have not considered interactions among predator species. In a quantitative synthesis with data collected from several cropping systems in Europe and North America, we analyzed how the level and within-field spatial stability of natural pest control services was related to the simplification of the surrounding landscape. All studies used aphids as a model species and exclusion cages to measure aphid pest control. Landscape simplification was quantified by the proportion of cultivated land within a 1 km radius around each plot. We found a consistent negative effect of landscape simplification on the level of natural pest control, despite interactions among enemies. Average level of pest control was 46 % lower in homogeneous landscapes dominated by cultivated land, as compared with more complex landscapes. Landscape simplification did not affect the amount of positive or negative interactions among ground-dwelling and vegetation-dwelling predators, or the within-field stability of pest control. Our synthesis demonstrates that agricultural intensification through landscape simplification has negative effects on the level of natural pest control with important implications for management to maintain and enhance ecosystem services in agricultural landscapes. Specifically, preserving and restoring semi-natural habitats emerges as a fundamental first step to maintain and enhance pest control services provided by predatory arthropods to agriculture.
Abstract. Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n ¼ 1350), farm (n ¼ 270), and European-region (n ¼ 9) scale. We partitioned diversity into its additive components a, b, and c, and assessed the relative contribution of b diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to b diversity on larger scales up to the farm and region level, and thereby was an indicator of farm-and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), b diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of a diversity decreased with AI, while relative importance of b diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agrienvironmental schemes in agroecosystems.
Agricultural intensification can affect biodiversity and related ecosystem services such as biological control, but large-scale experimental evidence is missing. We examined aphid pest populations in cereal fields under experimentally reduced densities of (1) ground-dwelling predators (-G), (2) vegetation-dwelling predators and parasitoids (-V), (3) a combination of (1) and (2) (-G-V), compared with open-fields (control), in contrasting landscapes with low vs. high levels of agricultural intensification (AI), and in five European regions. Aphid populations were 28%, 97%, and 199% higher in -G, -V, and -G-V treatments, respectively, compared to the open fields, indicating synergistic effects of both natural-enemy groups. Enhanced parasitoid: host and predator: prey ratios were related to reduced aphid population density and population growth. The relative importance of parasitoids and vegetation-dwelling predators greatly differed among European regions, and agricultural intensification affected biological control and aphid density only in some regions. This shows a changing role of species group identity in diverse enemy communities and a need to consider region-specific landscape management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.