Materials for uncemented endosseous implants have to assure an as short as possible osseointegration time. Thus, a material with both surface bioactivity and a porous outer structure can become a preferred choice for this type of applications. This paper presents a class of titanium-base PM composites, reinforced with particulate hydroxyapatite. Raw materials were titanium powder, obtained through hydriding--milling--dehydriding, with the grain size of 63-100 microm, and sol-gel hydroxyapatite (HA) powder, produced by the reaction between Ca(NO3)2 x 4H2O and (NH4)2HPO4. Blends with 5 to 50% HA were prepared and pressed in a rigid die, producing single composition or gradual composition samples. The applied pressure was of 400, 500 or 600 MPa. Sintering was performed in vacuum, at 1160 ( composite function)C. All samples, although well sintered, displayed swelling during sintering, due to diffusion into the matrix. The increase in volume is more severe for higher amounts of HA in the green compacts and for higher applied compaction pressure. Compacts with a gradual increase of the HA content are recommended from the functional and mechanical point of view, but the increase should be slow, not to produce interlayer cracks. The outer surface shows interconnected pores, suitable for the ingrowth of vital new bone.
New iron-based composites were investigated for applications within the friction materials domain. This study presents the elaboration and the structural and tribological characterization of iron-based friction composites containing iron, copper, graphite and/or nickel, introduced in a powder state. The technology employed for obtaining these materials is via a classical powder metallurgy route. The porosity of the studied materials, the tribological characterization, the roughness of researched composites and their structure are marked out. Results showed that the samples elaborated from the material with 10 wt.% Cu, 7 wt.% graphite, 12 wt.% Ni and the rest iron, compacted at 600 MPa, presented the best tribological behavior. The presence of pearlite, ferrite, nickel-based and copper-based solid solutions and free graphite in composite structures is highlighted.
The present research’ goal is the fabrication of Fe-based composite reinforced with oxide particles with special characteristics (wear, friction coefficient) for friction applications usually the Fe-based composite are obtained through melting and castings followed by other finishing operations. These technologies do not ensure a homogeneous distribution of reinforcement particles and that is why, the authors approached a PM specific technologies to obtained Fe-based composite. The Fe-based powder reinforcement with oxide particles obtained through mechanical alloying the powder was analyzed and characterized and then underwent the operation of milling in the planetary milling with ball, pressing and sintering at different temperatures and durations. SEM analysis had of identifying the distribution compounds into the Fe- matrix, their quantitative evolution and the influence of different parameters. The mechanical characteristics, wear and friction coefficient, were determined.
Although titanium is considered to be the most successful metal for uncemented endosseous implants, its biocompatibility may be unsatisfactory in certain clinical cases. As an early osseointegration is essential in order to reduce the implant failure risk, the bioactive fixation becomes the appropriate solution for bone applications. The method requires bioactive materials such as hydroxyapatite (HA) to facilitate the chemical bonding to tissue. The present work refers to Ti-HA composites designed for endosseous implants and obtained through the classic PM route. Grade 1 c.p. Ti powder obtained through the hydriding – milling – dehydriding process, 63 - 100 μm grain size, was used. Sol-gel HA powder, grain size of less than 100 μm, was obtained through the sol-gel method. Blends of Ti and 5 to 50% HA were compacted in a rigid die (0.5 cm2), without the use of any lubricant, with 400, 500 and 600 MPa, then vacuum sintered (10-6 torr) at 1160°C for 60 minutes. Samples are well sintered with a compactness that increases with the applied compaction pressure. A transition layer can be seen in the EDX at the interface between the Ti matrix and the HA particles and is expected to increase the overall mechanical stability of compacts. The pores, essential for osseointegration, are interconnected, with irregular shapes and sizes that reach 100 μm, the critical size needed for the formation of a vital new bone. The HA content has to be limited to 30%, not to lead to an excessive brittleness. The biologic viability of compacts was assessed by immersion for 7 days into a simulated body fluid (SBF). The subsequent XRD analyses have proven that a new HA layer is formed on the surface of samples. This layer is essential for accelerating the cellular response of osteoblasts in the body.
Shape memory Titanium-Nickel alloys, also known as Nitinol, are amongst the most utilized materials with special properties in the medical field. Together with the properties of shape memory and superelasticity, these alloys have a very good biocompatibility. In this study, the equiatomic Ti-Ni alloy was obtained in the form of alloyed powder, starting from elemental high purity powders, through mechanical alloying. Specimens for testing the mechanical characteristics of the material, as well as smaller samples for biocompatibility tests were manufactured. The latter ones were prepared for implantation on live tissue, on Wistar rats and Guinea pigs. The structure of samples was studied by microscopy and X-Ray diffraction analysis. All the results have demonstrated the presence of the TiNi intermetallic compound as the quantitative dominant phase. After applying an adequate thermo-mechanical treatment, the tested samples displayed measurable shape memory effect and superelasticity. The in vivo biocompatibility tests, done according to international standards, demonstrated the material’s bio-inertness in relation with living tissue. The obtained results have shown the possibility to elaborate Ti-Ni biocompatible alloys by mechanical milling and sintering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.