Background Genome-wide association studies (GWASs) in Parkinson's disease (PD) have increased the scope of biological knowledge about the disease over the past decade. We sought to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into disease etiology. Methods We performed the largest meta-GWAS of PD to date, involving the analysis of 7.8M SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases (having a first degree relative with PD), and 1.4M controls. We carried out a meta-analysis of this GWAS data to nominate novel loci. We then evaluated heritable risk estimates and predictive models using this data. We also utilized large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type and biological pathway enrichments for the identified risk factors. Additionally we examined shared genetic risk between PD and other phenotypes of interest via genetic correlations followed by Mendelian randomization. Findings We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of the heritable risk of PD depending on prevalence. Integrating methylation and expression data within a Mendelian randomization framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested PD loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes, smoking status, and educational attainment. Mendelian randomization between cognitive performance and PD risk showed a robust association. Interpretation These data provide the most comprehensive understanding of the genetic architecture of PD to date by revealing many additional PD risk loci, providing a biological context for these risk factors, and demonstrating that a considerable genetic component of this disease remains unidentified. Funding See supplemental materials (Text S2). lead to earlier detection and refined diagnostics, which may help improve clinical trials (4). The generation of copious amounts of public summary statistics created by this effort relating to both the GWAS and subsequent analyses of gene expression and methylation patterns may be of use to investigators planning follow-up functional studies in stem cells or other cellular screens, allowing them to prioritize targets more efficiently using our data as additional evidence. We hope our findings may have some downstream clinical impact in the future such as improved patient stratification for clinical trials and genetically informed drug targets.
High-throughput next-generation sequencing can identify disease-causing mutations in extremely heterogeneous disorders. Kara et al . investigate a series of 97 index cases with complex hereditary spastic paraplegia (HSP). They identify SPG11 defects in 30 families, as well as mutations in other HSP genes and genes associated with disorders including Parkinson’s disease.
Objective:To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS).Methods:We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed.Results:We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10−6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA.Conclusions:We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps.
Key Points Question What genes and genomic processes underlie risk of sporadic Parkinson disease? Findings This genetic association study integrated Parkinson disease genome-wide association study data and brain-derived gene regulation data using various complementary bioinformatic tools and identified 11 candidate genes with evidence of disease-associated regulatory changes. Coexpression and protein level analyses of these genes demonstrated a significant functional association with known mendelian Parkinson disease genes. Meaning This study suggests that gene regulation data may be used to identify candidate genes and pathways involved in sporadic Parkinson disease.
Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson’s disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in ~ 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.