Close homologue of L1 (CHL1) is a cell recognition molecule known to promote axonal growth in vitro. We have investigated the expression of CHL1 mRNA by regenerating central nervous system (CNS) neurons, by using in situ hybridisation 3 days to 10 weeks following the implantation of living and freeze-killed peripheral nerve autografts into the thalamus of adult rats. At all survival times after implantation of living grafts, neurons of the thalamic reticular nucleus (TRN), close to the graft tip and up to 1 mm away from it, displayed strong signal for CHL1 mRNA, even though TRN neurons show very low levels of CHL1 mRNA expression in unoperated animals. When the cell bodies of regenerating neurons were identified by retrograde labelling from the distal portion of the grafts, 4-6 weeks after operation, most of the labelled cells were found in the TRN and could be shown to haveupregulated CHL1 mRNA. In addition, some neurons in dorsal thalamic nuclei near the graft tip transiently upregulated CHL1 mRNA during the first 3 weeks after graft implantation, and glial cells showing CHL1 mRNA expression were present at the brain/graft interface 3 days to 2 weeks after operation. Freeze-killed grafts, into which axons do not regenerate, caused a transient upregulation of CHL1 in very few TRN neurons near the graft tip and in glial cells at the brain/graft interface but did not produce prolonged CHL1 mRNA expression. CHL1 can therefore be added to the list of molecules (including GAP-43, L1, and c-jun) strongly expressed by CNS neurons that regenerate their axons into nerve grafts, but not by those neurons that fail to regenerate their axons.
All 377 dry skulls were examined for the occurrence and morphometry of the foramen of Vesalius (FV) both in the middle cranial fossa and at the extracranial view of the skull base. There were 25.9% and 10.9% of FV found at the extracranial view of the skull base and in the middle cranial fossa, respectively. Total patent FV were 16.1% (11.9% unilaterally and 4.2% bilaterally). Most FV were found in male and on the left side. Comparatively, FV at the extracranial view of the skull base had a larger maximum diameter. The distance between FV and the foramen ovale (FO) was as short as 2.05 ± 1.09 mm measured at the extracranial view of the skull base. In conclusion, although the existence of FV is inconstant, its occurrence could not be negligible. The proximity of FV to FO should remind neurosurgeons to be cautious when performing the surgical approach through FO.
Peripheral nerve grafts in the neostriatum promote axonal regeneration from restricted classes of CNS neuron, principally cells in the substantia nigra pars compacta (SNpc) and striatal cholinergic interneurons. We have examined the molecular responses of CNS neurons induced to regenerate axons by tibial nerve grafting to the neostriatum of adult rats. Brain sections were probed for mRNAs for the transcription factor c-jun, and the cell recognition molecule CHL1, or immunoreacted for TrkA or p75, 1 day to 29 weeks after grafting (dpo; wpo). In unoperated rats, scattered neurons throughout the neostriatum showed weak signals for CHL1 mRNA and slightly stronger signals for c-jun mRNA. Cells of similar appearance strongly expressed TrkA but possessed little p75. By 1 dpo, many neostriatal neurons of various sizes and GFAP + glial cells near the host/graft interface had upregulated CHL1 mRNA, c-jun mRNA and p75. Most of the larger (20-25 microm diameter) CHL1 mRNA+ cells were also TrkA+, indicating that they were NGF-sensitive cholinergic interneurons. From two weeks postgrafting, high levels of CHL1 and c-jun mRNAs and p75 in the neostriatum were confined to a few presumptive cholinergic interneurons; p75+ cells were also TrkA+ and were larger than TrkA+ neurons on the contralateral side. Retrograde labelling showed that most p75+ and some TrkA+ neurons regenerated axons through the graft. Neurons in the SNpc showed a moderate to strong signal for CHL1 mRNA, weaker signal for c-jun mRNA, and no p75 or TrkA. Some SNpc cells upregulated c-jun mRNA after graft implantation, although they did not upregulate CHL1 mRNA, p75 or TrkA. Since neostriatal neurons which regenerate axons into grafts express receptors for NGF, and grafts mimic the effects of NGF treatment on these cells, sensitivity to graft-derived NGF may be a determinant of their high regenerative capacity. The finding that c-jun and CHL1 are consistently expressed by CNS neurons induced to regenerate their axons strongly supports the idea that these molecules are directly involved in axonal regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.