Exendin-4 is a stable peptide agonist of GLP-1 receptor that exhibits insulinotropic actions. Some in vivo studies indicated insulin-independent glucoregulatory actions of exendin-4. That finding prompted us to evaluate effects of exendin-4 on liver glucose metabolism. Acute and chronic treatment of exendin-4 resulted in increased hepatic glucokinase activity in db/db mice but not in lean C57 mice. The stimulatory effect of exendin-4 on glucokinase activity was abrogated by exendin 9-39, a GLP-1 antagonist. Exposure of hepatocytes isolated from db/db mice to exendin-4 elicited a rapid increase in cAMP, which was synergized by IBMX, an inhibitor of cAMP degradation. The GLP-1 antagonist, exendin 9-39, has abolished the cAMP generating effects of exendin-4 as well. Furthermore, chronic treatment of exendin-4 in streptozotocin-treated C57 mice resulted in restoration of hepatic glycogen, an indicator of improved glucose metabolism, without apparent changes in serum insulin levels. In conclusion, exendin-4 increased glucokinase enzyme protein and activity in liver via a mechanism parallel to and independent of insulin. Exendin-4-induced increase in hepatic glucokinase activity is more pronounced in the presence of hepatic insulin resistance. This beneficial effect of exendin-4 on liver glucokinase activity may be mediated by GLP-1 receptor.
1. The present study was designed to investigate the neuroprotective effect of trimetazidine (TMZ) following focal cerebral ischaemia-reperfusion (I/R) injury in rat forebrain. 2. Cerebral I/R injury was induced in rats by middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion for 22 h. Trimetazidine (5 and 25 mg/kg, i.p.) was administered 1 h after induction of MCAO. The effects of TMZ were investigated by measuring neurological deficit, volume of infarct and brain swelling after 22 h reperfusion. Oxidative stress and inflammatory reactivity were assessed by estimating anti-oxidant markers and myeloperoxidase (MPO) activity in brain homogenates. Rectal temperature was measured during the study. The effects of TMZ on blood-brain barrier (BBB) permeability and apoptosis were also investigated in rat brain. Apoptosis was observed by DNA fragmentation studies using agarose gel electrophoresis. 3. Treatment with TMZ significantly (P < 0.01) reduced infarct volume and brain swelling. Superoxide dismutase (SOD) activity was reduced in ipsilateral hemispheres of vehicle (saline)-treated reperfused (RI) animals. Treatment with TMZ significantly restored SOD activity (P < 0.01) and glutathione levels (P < 0.05) after reperfusion compared with RI animals. Lipid peroxidation, MPO activity, BBB permeability and rectal temperature were all significantly (P < 0.01, P < 0.05 and P < 0.001, respectively) reduced in TMZ-treated animals compared with RI animals. 4. These results suggest that TMZ protects the brain against cerebral I/R injury and that this neuroprotective activity could be mediated by its anti-oxidant properties. The reduction in rectal temperature by TMZ treatment may be responsible for maintaining the delicate energy balance during I/R injury in rat brain and could have contributed to the neuroprotective activity of TMZ.
1. One of the major causes of metabolic syndrome is elevated 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in the liver and adipose tissue. High 11β-HSD1 expression contributes significantly to the diabetic phenotype in db/db mice. The purpose of the present study was to test the effect of the pharmacological inhibition of 11β-HSD1 inhibition by carbenoxolone in db/db mice, a genetic model of diabetes. 2. Inhibition of 11β-HSD1 by carbenoxolone was evaluated in liver homogenates obtained from untreated mice. At 0.4, 0.8, 1.6 and 3.2 μmol/L, carbenoxolone reduced the conversion of cortisone to cortisol by 21%, 48%, 82% and 95%, respectively. 3. In another series of experiments in which female db/db mice were dosed orally with carbenoxolone (10, 25 and 50 mg/kg, twice daily) for 10 days, dose-dependent decreases were observed in 11β-HSD1 activity in the brain, adipose and liver. In the case of 10 mg/kg carbenoxolone, the effects were not significant. In addition, the bodyweight of female db/db mice was reduced by 10% and 13% following treatment with 10 and 50 mg/kg carbenoxolone, respectively. Carbenoxolone treatment dose-dependently improved fat mass, energy expenditure, the serum lipid profile, serum leptin and insulin and glucose tolerance. Furthermore, 50 mg/kg carbenoxolone reduced both phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) activity in the liver by 75% and 52%, respectively. These decreases were associated with increased glucokinase protein expression and activity in the liver. 4. Carbenoxolone inhibition of 11β-HSD1 in the liver, adipose and brain significantly improves the symptoms of metabolic syndrome in db/db mice. These improvements can be attributed to increased energy expenditure, decreased activity of the gluconeogenic enzymes PEPCK and G6Pase in the liver and improved glucokinase function in the liver and pancreas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.