The concept of realization of Weyl points close to the Fermi level in materials with broken time-reversal symmetry has significant theoretical and technological ramifications. Here, we review the investigation of magneto-transport measurements in single crystals of magnetic Weyl semimetal Co 3 Sn 2 S 2 . We see a turn-on like behaviour followed by saturation in resistivity under magnetic field in the low temperature region which is allocated to the topological surface states. A non-saturating magnetoresistance, linear at high fields, is observed at low temperatures where applied magnetic field is transverse to the current direction. The linear negative magnetoresistance at low magnetic fields (B < 0.1 T) provides evidence for time reversal symmetry breaking in Co 3 Sn 2 S 2 . Chiral anomaly in Weyl metallic state in Co 3 Sn 2 S 2 is confirmed from the breakdown of Ohm's law in the electronic transport. Shubnikov de Haas (SdH) oscillation measurement has unveiled the multiple sub-bands on the Fermi surface that corresponds to a non-trivial Berry phase. The non-linear behaviour in Hall resistivity validates the existence of two type of charge carriers with equal electron and hole densities. Strong temperature dependence of carrier mobilities reflects the systematic violation of Kohler's rule in Co 3 Sn 2 S 2 . Our findings open avenues to study kagome-lattice based magnetic Weyl semimetals that unfurl the basic topological aspects leading to significant ramification for spintronics.
Co 3 Sn 2 S 2 has recently emerged as a ferromagnetic Weyl semimetal. Theoretical investigation of the spin-split bands predicted half metallicity in the compound. Here, we report the detection of a spin-polarized supercurrent through a Nb/Co 3 Sn 2 S 2 point contact where Andreev reflection is seen to be large, indicating a large deviation from half metallicity. In fact, analysis of the Andreev reflection spectra reveals very small spin polarization at different points with the degree of spin polarization ranging from 20% to 50% at the Fermi level of Co 3 Sn 2 S 2 . Our theoretical calculations of electronic density of states reveal a spin-depolarizing effect near the Fermi energy when the role of spin-orbit coupling is included. The inclusion of spin-orbit coupling also reveals particle-hole asymmetry that explains a large asymmetry observed in our experimental Andreev reflection spectra.
In this paper, we present structural, magnetic, magnetocaloric, and critical study of perovskite La0.7Ag0.2Bi0.1MnO3 (LABMO) nanocrystalline compound synthesized by the sol–gel method. Temperature dependent magnetization measurements reveal the significant suppression of ferromagnetism in the LABMO sample upon Bi-doping on a La-site. The downturn in inverse magnetic susceptibility (χ−1) observed just above TC (236 K) in the paramagnetic regime corroborates the presence of short-range ferromagnetic correlations, which is the characteristic of the Griffith like phase below 270 K. The deviation from linear paramagnetic behavior in χ−1 implies the strong Griffith singularity. Furthermore, we have employed an integrated Maxwell's thermodynamic relation numerically and used isothermal magnetization data to determine the change in magnetic entropy at various magnetic fields. For a magnetic field change of 5 T, the value of maximum magnetic entropy change is found to be ∼6 J kg−1 K−1. We have also explored the critical behavior of the LABMO sample at transition temperatures using different theoretical models. The value of exponents β, γ, and δ does not fall into any known universality class. Despite this, the scaling relations show that interactions are renormalized around the Curie temperature (TC). The exponent n ≤ 2 extracted from field dependency on the magnetic entropy change confirms the second-order phase transition in LABMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.