In order to assess drought tolerance mechanism in cotton, short-term drought-induced biochemical responses were monitored in two cotton (Gossypium hirsutum L.) genotypes contrasting their tolerance to water deficit. The seeds of two genotypes, namely GM 090304 (moderately drought tolerant) and Ca/H 631 (drought sensitive), were sown in pots containing soil, sand and peat in the ratio of 1:1:1, and irrigated every alternate day up to 45 days after sowing when each genotype was subjected to a cycle of water stress by withholding irrigation for 7 days. The stress cycle was terminated by re-watering the stressed plants for 7 days. The leaf of the drought tolerant genotype (GM 090304) maintained higher relative water content under water stress than that of the drought sensitive genotype (Ca/H 631). The levels of biochemical components, such as chlorophylls, carotenoids, total protein, free proline, total free amino acids, sugars, starch and polyphenols, were measured during the stress as well as the recovery periods. The chlorophylls, carotenoids, protein and starch contents decreased in drought stressed plants as compared to control and tended to increase when the plants were recovered from stress. The degree of decrease in chlorophylls, carotenoids and protein contents under drought was higher in the sensitive genotype (Ca/H 631) as compared to the moderately tolerant genotype (GM 090304). However, proline, total free amino acids, total sugars, reducing sugars and polyphenol contents were increased in drought stressed plants and tended to decrease during the period of recovery. Drought-induced increases in total free amino acids, proline, sugars and polyphenols were significantly higher in the moderately tolerant genotype (GM 090304) than in the sensitive genotype (Ca/H 631). These results suggest that proline, sugars and polyphenols act as main compatible solutes in cotton in order to maintain osmotic balance, to protect cellular macromolecules, to detoxify the cells, and to scavenge free radicals under water stress condition.
The relative water content (RWC), free proline levels and the activities of enzymes involved in proline metabolism were studied in drought tolerant (Ca/H 680) and drought sensitive (Ca/H 148) genotypes of cotton (Gossypium hirsutum L.) during induction of water stress and posterior recovery. Water stress caused a significant increase in proline levels and P5CS activity in leaves of both tolerant and sensitive genotypes, whereas the activity of P5CR increased minimally and the activity of OAT remains unchanged. The activity of PDH decreased under drought stress in both the genotypes. The leaf of tolerant genotype maintained higher RWC, photosynthetic activity and proline levels, as well as higher P5CS and P5CR activities under water stress than that of drought sensitive genotype. The drought induced proline levels and activities of P5CS and P5CR declined and tend to be equal to their respective controls, during recovery, whereas the PDH activity tends to increase. These results indicate that induction of proline levels by up regulation of P5CS and down regulation of PDH may be involved in the development of drought tolerance in cotton.Keywords Drought stress Á Gossypium Á Ornithine-d-aminotransferase Á Proline dehydrogenase Á D 1 -Pyrrolline-5-carboxylate reductase Á D 1 -Pyrrolline-5-carboxylate synthetase Abbreviations DCIP 2,6-Dichloroindophenol OAT Ornithine-d-aminotransferase P5CR D 1 -Pyrrolline-5-carboxylate reductase P5CS D 1 -Pyrrolline-5-carboxylate synthetase PDH Proline dehydrogenase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.