Abstract. In the present work, flow and temperature distribution in the radiator fins of a power transformer is studied numerically with conjugate heat transfer using commercial CFD software to study the effect of radiation on heat dissipation. The approach considered here is a complete 3D geometry of the radiator fins with average height of the flute geometry of the fins for meshing and computational time reduction. Simulations are performed for ONAN (Oil Natural Air Natural) case for one radiator configuration. The simulations also study the effect of radiation and its impact on the overall heat dissipation. These results would give a holistic picture of heat transfer phenomenon to the designers.Transformers are one of the primary components for the transmission and distribution of electrical energy. They are extensively used in electric power systems to transfer power by electromagnetic induction between circuits at the same frequency, usually with changed values of voltage and current. The energy losses in the power transformers are proportional to the load. These losses are transformed into heat and consequently temperature of the cooling medium rises and must be cooled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.