The transforming growth factor-β (TGF-β) is a family of structurally related proteins that comprises of TGF-β, activins/inhibins, and bone morphogenic proteins (BMPs). Members of the TGF-β family control numerous cellular functions including proliferation, apoptosis, differentiation, epithelial-mesenchymal transition (EMT), and migration. The first identified member, TGF-β is implicated in several human diseases, such as vascular diseases, autoimmune disorders, and carcinogenesis. Activation of the TGF-β receptor by its ligands induces the phosphorylation of serine/threonine residues and triggers phosphorylation of the intracellular effectors, SMADs. Upon activation, SMAD proteins translocate to the nucleus and induce transcription of their target genes, regulating several cellular functions. TGF-β dysregulation has been implicated in carcinogenesis. In early stages of cancer, TGF-β exhibits tumor suppressive effects by inhibiting cell cycle progression and promoting apoptosis. However, in late stages TGF-β exerts tumor promoting effects, increasing tumor invasiveness, and metastasis. Furthermore, the TGF-β signaling pathway communicates with other signaling pathways in a synergistic or antagonistic manner and regulates cellular functions. Elevated TGF-β activity has been associated with poor clinical outcome. Given the pivotal role of TGF-β in tumor progression, this pathway is an attractive target for cancer therapy. Several therapeutic tools such as TGF-β antibodies, antisense oligonucleotides, and small molecules inhibitors of TGF-β receptor-1 (TGF-βR1) have shown immense potential to inhibit TGF-β signaling. Finally, in the interest of developing future therapies, further studies are warranted to identify novel points of convergence of TGF-β with other signaling pathways and oncogenic factors in the tumor microenvironment.
The IL-6/STAT3 signaling pathway may mediate FSH-, LH-, and estrogen-stimulated HOSE cell proliferation. Increased IL-6Ralpha expression and constitutive STAT3 activation may be associated with ovarian cancer.
Signal transducer and activator of transcription-3 (STAT-3) is constitutively activated in ovarian and endometrial cancers and is implicated in uncontrolled cell growth. Thus, its disruption could be an effective approach to control tumorigenesis. Curcumin is a dihydroxyphenolic compound, with proven anti-cancer efficacy in various cancer models. We examined the anti-tumor mechanism of curcumin on STAT-3 and on the negative regulators of STAT-3, including suppressors of cytokine signaling proteins (SOCS-1 and SOCS-3), protein inhibitors of activated STAT (PIAS-1 and PIAS-3), and SH2 domain-containing phosphatases (SHP-1 and SHP-2) in ovarian and endometrial cancer cell lines. Treatment of cancer cells with curcumin induced a dose- and time-dependent decrease of constitutive IL-6 expression and of constitutive and IL-6-induced STAT-3 phosphorylation, which is associated with decreased cell viability and increased cleavage of caspase-3. The inhibition of STAT-3 activation by curcumin was reversible, and phosphorylated STAT-3 levels returned to control levels 24 h after curcumin removal. Compared to normal cells baseline expression of SOCS-3 was high in cancer cells and a marked decrease in SOCS-3 expression was seen following curcumin treatment. Overexpression of SOCS-3 in curcumin-treated cells increased expression of phosphorylated STAT-3 and resulted in increased cell viability. Normal ovarian and endometrial cells exhibited high expression of PIAS-3 protein, whereas in cancer cells the expression was greatly reduced. Curcumin increased PIAS-3 expression in cancer cells. Of significance, siRNA-mediated knockdown of PIAS-3 overcomes the inhibitory effect of curcumin on STAT-3 phosphorylation and cell viability. In conclusion, curcumin suppresses JAK-STAT signaling via activation of PIAS-3, thus attenuating STAT-3 phosphorylation and tumor cell growth.
We have previously demonstrated that Protein Kinase D1 (PKD1) interacts with E-cadherin and is associated with altered cell aggregation and motility in prostate cancer (PC). Because both PKD1 and E-cadherin are known to be dysregulated in PC, in this study we investigated the functional consequences of combined dysregulation of PKD1 and E-cadherin using a panel of human PC cell lines. Gainand loss of function studies were carried out by either transfecting PC cells with fulllength E-cadherin and/or PKD1 cDNA or by protein silencing by siRNAs, respectively. We studied major malignant phenotypic characteristics including cell proliferation, motility, and invasion at the cellular level, which were corroborated with appropriate changes in representative molecular markers. Down regulation or ectopic expression of either E-cadherin or PKD1 significantly increased or decreased cell proliferation, motility, and invasion, respectively, and combined down regulation cumulatively influenced the effects. Loss of PKD1 or E-cadherin expression was associated with increased expression of the pro-survival molecular markers survivin, β-catenin, cyclin-D, and c-myc, whereas overexpression of PKD1 and/or E-cadherin resulted in an increase of caspases. The inhibitory effect of PKD1 and E-cadherin on cell proliferation was rescued by coexpression with β-catenin, suggesting that β-catenin mediates the effect of proliferation by PKD1 and E-cadherin. This study establishes the functional significance of combined dysregulation of PKD1 and E-cadherin in PC and that their effect on cell growth is mediated by β-catenin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.