Convolutional Neural Networks (CNNs) are powerful and highly ubiquitous tools for extracting features from large datasets for applications such as computer vision and natural language processing. However, a convolution is a computationally expensive operation in digital electronics. In contrast, neuromorphic photonic systems, which have experienced a recent surge of interest over the last few years, propose higher bandwidth and energy efficiencies for neural network training and inference. Neuromorphic photonics exploits the advantages of optical electronics, including the ease of analog processing, and busing multiple signals on a single waveguide at the speed of light. Here, we propose a Digital Electronic and Analog Photonic (DEAP) CNN hardware architecture that has potential to be 2.8 to 14 times faster while maintaining the same power usage of current state-of-the-art GPUs.
Artificial intelligence enabled by neural networks has enabled applications in many fields (e.g. medicine, finance, autonomous vehicles). Software implementations of neural networks on conventional computers are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimic neurons and synapses in brain for distributed and parallel processing. Neuromorphic engineering enabled by silicon photonics can offer subnanosecond latencies, and can extend the domain of artificial intelligence applications to high-performance computing and ultrafast learning. We discuss current progress and challenges on these demonstrations to scale to practical systems for training and inference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.