The magnetic and structural properties of polycrystalline Co 4−x Ni x Nb 2 O 9 (x = 1, 2) have been investigated by neutron powder diffraction, magnetization and heat capacity measurements, and density functional theory (DFT) calculations. For x = 1, the compound crystallizes in the trigonal P3c1 space group. Below T N = 31 K it develops a weakly noncollinear antiferromagnetic structure with magnetic moments in the ab plane. The compound with x = 2 has crystal structure of the orthorhombic Pbcn space group and shows a hard ferrimagnetic behavior below T C = 47 K. For this compound a weakly noncollinear ferrimagnetic structure with two possible configurations in the ab plane was derived from neutron diffraction study. By calculating magnetic anisotropy energy via DFT, the ground-state magnetic configuration was determined for this compound. The heat capacity study in magnetic fields up to 140 kOe provides further information on the magnetic structure of the compounds.
We report high-resolution single-crystal inelastic neutron scattering measurements on the spin-1/2 antiferromagnet Ba(TiO)Cu 4 (PO 4 ) 4 . This material is formed from layers of four-site "cupola" structures, oriented alternately upwards and downwards, which constitute a rather special realization of two-dimensional (2D) square-lattice magnetism. The strong Dzyaloshinskii-Moriya (DM) interaction within each cupola, or plaquette, unit has a geometry largely unexplored among the numerous studies of magnetic properties in 2D Heisenberg models with spin and spatial anisotropies. We have measured the magnetic excitations at zero field and in fields up to 5 T, finding a complex mode structure with multiple characteristic features that allow us to extract all the relevant magnetic interactions by modeling within the linear spin-wave approximation. We demonstrate that Ba(TiO)Cu 4 (PO 4 ) 4 is a checkerboard system with almost equal intra-and interplaquette couplings, in which the intraplaquette DM interaction is instrumental both in enforcing robust magnetic order and in opening a large gap at the Brillouin-zone center. We place our observations in the perspective of generalized phase diagrams for spin-1/2 square-lattice models and materials, where exploring anisotropies and frustration as routes to quantum disorder remains a frontier research problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.