Annual and interannual dynamics of shellfish toxins and associated harmful algal species (HAS) were analyzed from 2015 to 2020 in Tortolì Lagoon (Sardinia, west Mediterranean Sea). Analysis of seasonal occurrence of different harmful algae, such as Dinophysis spp., Prorocentrum spp., Pseudo-nitzschia spp. and Alexandrium minutum, was performed. The species Dinophysis acuminata and Dinophysis sacculus were responsible for the accumulation of lipophilic toxins belonging to the okadaic acid group (OAs) and pectenotoxins2 (PTX2) in bivalve mollusks. The highest HAS detection was recorded in the winter months; in particular, Dinophysis spp. was mostly present in January–February. Out of 1090 analyzed mollusk samples, 39 were non-compliant, exceeding the legal limits (160 μg OA eq/kg e.p.) reported in Regulation 853/2004 of the European Commission. A statistical analysis related to the presence of OA and PTX2 in mollusks with various environmental parameters (pH, water temperature, dissolved oxygen, algal density) was implemented, proving a clear winter seasonality. The present study highlights the necessity to better understand the different factors able to influence the production and accumulation of toxins in bivalve mollusks bred in an important Sardinian production area. The contribution of this research is important not only from an environmental and productive point of view but also from the view of implementing management in order to mitigate any harm to human health.
Several planktonic dinoflagellates can produce lipophilic phycotoxins that represent a significant threat to public health as well as to shellfish and fish farming. Poisoning related to some of these toxins is categorised as diarrhetic shellfish poisoning. We analysed 975 shellfish samples from Tortolì in the central-eastern region of Sardinia (Italy) from January 2016 to March 2020, to investigate the prevalence of different lipophilic marine biotoxins in mollusc bivalves. The results highlighted the predominant presence of toxins belonging to the okadaic acid group in all samples with toxin concentrations exceeding legal limits, and revealed the new occurrence of pectenotoxins in oysters and clams with a winter seasonality in recent years. The origin of shellfish toxicity was associated with the same Dinophysis species, mainly D. acuminata. Based on both these results and other precedents, monitoring and recording systems are strongly recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.