The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and non-coding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains and updates the GO knowledgebase. The GO knowledgebase consists of three components: 1) the Gene Ontology – a computational knowledge structure describing functional characteristics of genes; 2) GO annotations – evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and 3) GO Causal Activity Models (GO-CAMs) – mechanistic models of molecular “pathways” (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised and updated in response to newly published discoveries, and receives extensive QA checks, reviews and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, as well as guidance on how users can best make use of the data we provide. We conclude with future directions for the project.
Xenbase (www.xenbase.org) is an online resource for researchers utilizing Xenopus laevis and Xenopus tropicalis, and for biomedical scientists seeking access to data generated with these model systems. Content is aggregated from a variety of external resources and also generated by in-house curation of scientific literature and bioinformatic analyses. Over the past two years many new types of content have been added along with new tools and functionalities to reflect the impact of high-throughput sequencing. These include new genomes for both supported species (each with chromosome scale assemblies), new genome annotations, genome segmentation, dynamic and interactive visualization for RNA-Seq data, updated ChIP-Seq mapping, GO terms, protein interaction data, ORFeome support, and improved connectivity to other biomedical and bioinformatic resources.
Xenbase (http://www.xenbase.org), the Xenopus frog model organism database, integrates a wide variety of data from this biomedical model genus. Two closely related species are represented: the allotetraploid Xenopus laevis that is widely used for microinjection and tissue explant-based protocols, and the diploid Xenopus tropicalis which is used for genetics and gene targeting. The two species are extremely similar and protocols, reagents and results from each species are often interchangeable. Xenbase imports, indexes, curates and manages data from both species; all of which are mapped via unique IDs and can be queried in either a species-specific or species agnostic manner. All our services have now migrated to a private cloud to achieve better performance and reliability. We have added new content, including providing full support for morpholino reagents, used to inhibit mRNA translation or splicing and binding to regulatory microRNAs. New genomes assembled by the JGI for both species and are displayed in Gbrowse and are also available for searches using BLAST. Researchers can easily navigate from genome content to gene page reports, literature, experimental reagents and many other features using hyperlinks. Xenbase has also greatly expanded image content for figures published in papers describing Xenopus research via PubMedCentral.
Xenbase (www.xenbase.org) is a knowledge base for researchers and biomedical scientists that employ the amphibian Xenopus as a model organism in biomedical research to gain a deeper understanding of developmental and disease processes. Through expert curation and automated data provisioning from various sources Xenbase strives to integrate the body of knowledge on Xenopus genomics and biology together with the visualization of biologically significant interactions. Most current studies utilize next generation sequencing (NGS) but until now the results of different experiments were difficult to compare and not integrated with other Xenbase content. Xenbase has developed a suite of tools, interfaces and data processing pipelines that transforms NCBI Gene Expression Omnibus (GEO) NGS content into deeply integrated gene expression and chromatin data, mapping all aligned reads to the most recent genome builds. This content can be queried and visualized via multiple tools and also provides the basis for future automated ‘gene expression as a phenotype’ and gene regulatory network analyses.
The intracellularly acting protein toxin of Pasteurella multocida (PMT) causes numerous effects in cells, including activation of inositol 1,4,5-trisphosphate (IP 3 ) signaling, Ca 2؉ mobilization, protein phosphorylation, morphological changes, and DNA synthesis. The direct intracellular target of PMT responsible for activation of the IP 3 pathway is the G q/11 ␣-protein, which stimulates phospholipase C (PLC) 1. The relationship between PMT-mediated activation of the G q/11 -PLC-IP 3 pathway and its ability to promote mitogenesis and cellular proliferation is not clear. PMT stimulation of p42/p44 mitogen-activated protein kinase occurs upstream via G q/11 -dependent transactivation of the epidermal growth factor receptor. We have further characterized the effects of PMT on the downstream mitogenic response and cell cycle progression in Swiss 3T3 and Vero cells. PMT treatment caused dramatic morphological changes in both cell lines. In Vero cells, limited multinucleation, nuclear fragmentation, and disruption of cytokinesis were also observed; however, a strong mitogenic response occurred only with Swiss 3T3 cells. Significantly, this mitogenic response was not sustained. Cell cycle analysis revealed that after the initial mitogenic response to PMT, both cell types subsequently arrested primarily in G 1 and became unresponsive to further PMT treatment. In Swiss 3T3 cells, PMT induced up-regulation of c-Myc; cyclins D1, D2, D3, and E; p21; PCNA; and the Rb proteins, p107 and p130. In Vero cells, PMT failed to up-regulate PCNA and cyclins D3 and E. We also found that the initial PMT-mediated up-regulation of several of these signaling proteins was not sustained, supporting the subsequent cell cycle arrest. The consequences of PMT entry thus depend on the differential regulation of signaling pathways within different cell types.The protein toxin from Pasteurella multocida (PMT) is the primary etiological agent of progressive atrophic rhinitis (11), and purified PMT experimentally induces all of the major symptoms of atrophic rhinitis in animals (2, 23). PMT appears to bind to and enter mammalian cells via receptor-mediated endocytosis (30, 33), although the details of this process are still unclear. In fibroblasts and osteoblasts, PMT acts intracellularly to enhance inositolphospholipid hydrolysis (25, 26), mobilize intracellular Ca 2ϩ pools (40), increase protein phosphorylation (41), stimulate cytoskeletal changes such as stress fiber formation and focal adhesion assembly (5, 21), and initiate DNA synthesis (33). In contrast to the case for fibroblast cells, PMT exerts cytotoxic or cytopathic effects on Vero cells (2, 28), embryonic bovine lung cells (34), and canine osteosarcoma cells (30).PMT exerts its effects on these cellular processes by acting on the free, monomeric ␣ subunit of the G q/11 family of heterotrimeric G-proteins (46), which stimulates phospholipase C (PLC) 1 to hydrolyze phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol. Accordingly, the releas...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.