The results of this study indicate that the GABA(B[1]) polymorphism (G1465A) confers a highly increased susceptibility to TLE. Moreover, it seems to influence the severity of this common epileptic disorder.
Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.