Background: The BRCA1-associated protein-1 (BAP1) tumor predisposition syndrome (BAP1-TPDS) is a hereditary tumor syndrome caused by germline pathogenic variants in BAP1 encoding a tumor suppressor associated with uveal melanoma, mesothelioma, cutaneous melanoma, renal cell carcinoma, and cutaneous BAP1-inactivated melanocytic tumors. However, the full spectrum of tumors associated with the syndrome is yet to be determined. Improved understanding of the BAP1-TPDS is crucial for appropriate clinical management of BAP1 germline variant carriers and their families, including genetic counseling and surveillance for new tumors. Methods: We collated germline variant status, tumor diagnoses, and information on BAP1 immunohistochemistry or loss of somatic heterozygosity on 106 published and 75 unpublished BAP1 germline variant-positive families worldwide to better characterize the genotypes and phenotypes associated with the BAP1-TPDS. Tumor spectrum and ages of onset were compared between missense and null variants. All statistical tests were two-sided. Results: The 181 families carried 140 unique BAP1 germline variants. The collated data confirmed the core tumor spectrum associated with the BAP1-TPDS and showed that some families carrying missense variants can exhibit this phenotype. A variety of noncore BAP1-TPDS -associated tumors were found in families of variant carriers. Median ages of onset of core tumor types were lower in null than missense variant carriers for all tumors combined (P < .001), mesothelioma (P < .001), cutaneous melanoma (P < .001), and nonmelanoma skin cancer (P < .001).
A French and an Australian study have recently identified a rare germline functional variant in the microphthalmia-associated transcription factor (MITF) (E318K) that predisposes to familial and sporadic melanoma and to renal cell carcinoma (RCC), showing a new link between two tumour types with different risk factors and between deregulated sumoylation and cancer. The aim of this study was to test the prevalence of the MITF E318K mutation in 667 Italian melanoma patients. We observed significant associations between histological subtypes and family cancer history. Carriers exhibited a nearly threefold higher risk of developing melanoma compared with controls. Carriers were also more likely to have developed multiple primary melanomas (6.40-fold), compared with wt patients. Carriers with a personal and/or family history of pancreatic cancer and kidney cancer had a nearly 31- and eightfold higher risk of developing melanoma compared with wt patients. Our findings further support MITF as a medium-penetrance melanoma susceptibility gene, highlight a potential association with histological subtypes and suggest that MITF may predispose to pancreatic cancer.
BackgroundThe p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4.Methodology/Principal FindingsGiven the many factors that might influence p53 function, including expression levels, mutations, cofactor proteins and small molecules, we expanded our previously described yeast-based system to provide the opportunity for efficient investigation of their individual and combined impacts in a miniaturized format. The system integrates i) variable expression of p53 proteins under the finely tunable GAL1,10 promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1.Conclusions/SignificanceWe found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins.
Incidence of melanoma has been constantly growing during the last decades. Although most of the new diagnoses are represented by thin melanomas, the number of melanoma-related deaths in 2018 was 60,712 worldwide ( Global Cancer Observatory, 2019 ). Until 2011, no systemic therapy showed to improve survival in patients with advanced or metastatic melanoma. At that time, standard of care was chemotherapy, with very limited results. The identification of BRAF V600 mutation, and the subsequent introduction of BRAF targeting drugs, radically changed the clinical practice and dramatically improved outcomes. In this review, we will retrace the development of molecular-target drugs and the current therapeutic scenario for patients with BRAF mutated melanoma, from the introduction of BRAF inhibitors as single agents to modern clinical practice. We will also discuss the resistance mechanisms identified so far, and the future therapeutic perspectives in BRAF mutated melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.