The Anther ear1 (An1) gene product is involved in the synthesis of ent-kaurene, the first tetracyclic intermediate in the gibberellin (GA) biosynthetic pathway. Mutations causing the loss of An1 function result in a GA-responsive phenotype that includes reduced plant height, delayed maturity, and development of perfect flowers on normally pistillate ears. The an1::Mu2-891339 allele was recovered from a Mutator (Mu) F2 family. Using Mu elements as molecular probes, an An1-containing restriction fragment was identified and cloned. The identity of the cloned gene as An1 was confirmed by using a reverse genetics screen for maize families that contain a Mu element inserted into the cloned gene and then by demonstrating that the insertion causes an an1 phenotype. The predicted amino acid sequence of the An1 cDNA shares homology with plant cyclases and contains a basic N-terminal sequence that may target the An1 gene product to the chloroplast. The sequence is consistent with the predicted subcellular localization of AN1 in the chloroplast and with its biochemical role in the cyclization of geranylgeranyl pyrophosphate, a 20-carbon isoprenoid, to ent-kaurene. The semidwarfed stature of an1 mutants is in contrast with the more severely dwarfed stature of GA-responsive mutants at other loci in maize and may be caused by redundancy in this step of the GA biosynthetic pathway. DNA gel blot analysis indicated that An1 is a single-copy gene that lies entirely within the deletion of the an1-bz2-6923 mutant. However, homozygous deletion mutants accumulated ent-kaurene to 20% of the wild-type level, suggesting that the function of An1 is supplemented by an additional activity.
The coleopteran insect western corn rootworm (WCR) (Diabrotica virgifera virgifera LeConte) is a devastating crop pest in North America and Europe. Although crop plants that produce Bacillus thuringiensis (Bt) proteins can limit insect infestation, some insect populations have evolved resistance to Bt proteins. Here we describe an insecticidal protein, designated IPD072Aa, that is isolated from Pseudomonas chlororaphis. Transgenic corn plants expressing IPD072Aa show protection from WCR insect injury under field conditions. IPD072Aa leaves several lepidopteran and hemipteran insect species unaffected but is effective in killing WCR larvae that are resistant to Bt proteins produced by currently available transgenic corn. IPD072Aa can be used to protect corn crops against WCRs.
The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double bonds adjacent to an oxo group in alpha,beta-unsaturated aldehydes or ketones. Some of them have very high substrate specificity and are part of the octadecanoid pathway which convert linolenic acid to the phytohormone jasmonic acid (JA). Sequencing and analysis of ESTs and genomic sequences from available private and public databases revealed that the maize genome encodes eight OPR genes. Southern blot analysis and mapping of individual OPR genes to maize chromosomes using oat maize chromosome addition lines provides independent confirmation of this number of OPR genes in maize. A survey of massively parallel signature sequencing (MPSS) assays revealed that transcripts of each OPR gene accumulate differentially in diverse organs of maize plants suggesting distinct biological functions. Similarly, RNA blot analysis revealed that distinct OPR genes are differentially regulated in response to stress hormones, wounding or pathogen infection. ZmOPR1 and/or ZmOPR2 appear to function in defense responses to pathogens because they are transiently induced by salicylic acid (SA), chitooligosaccharides, and by infection with Cochliobolus carbonum, Cochliobolus heterostrophus and Fusarium verticillioides, but not by wounding. In contrast to these two genes, transcript levels of ZmOPR6 and ZmOPR7 and/or ZmOPR8 are highly induced by wounding or treatments with the wound-associated signaling molecules JA, ethylene and abscisic acid. However, accumulation of ZmOPR6 and ZmOPR7/8 mRNAs was not upregulated by SA treatments or by pathogen infection suggesting specific involvement in the wound-induced defense responses. None of the treatments induced transcripts of ZmOPR3, 4, or 5.
RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by “blebbing” of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.