The genetic and environmental factors that control the development of Sjögren’s syndrome, an autoimmune disease mainly involving the salivary and lacrimal glands, are poorly understood. Viruses which infect the glands may act as a trigger for disease. The ability of sialotropic murine CMV (MCMV) to induce acute and chronic glandular disease was characterized in an autoimmune-prone mouse strain, NZM2328. MCMV levels were detectable in the salivary and lacrimal glands 14–28 days after i.p. infection and correlated with acute inflammation in the submandibular gland. After latency, virus was undetectable in the glands by PCR. At this stage, NZM2328 female mice developed severe chronic periductal inflammation in both submandibular and lacrimal glands in contrast to the much milder infiltrates found in female B6-lpr and male NZM2328. The focal infiltrates consisted of CD4+ and B220+ cells as opposed to diffuse CD4+, CD8+, and B220+ cells during acute infection. Salivary gland functional studies revealed a gender-specific progressive loss of secretory function between days 90 and 125 postinfection. Latent MCMV infection did not significantly affect the low incidence of autoantibodies to Ro/SSA and La/SSB Ags in NZM2328 mice. However, reactivities to other salivary and lacrimal gland proteins were readily detected. MCMV infection did not significantly alter the spontaneous onset of kidney disease in NZM2328. Thus, chronic inflammation induced by MCMV with decreased secretory function in NZM2328 mice resembles the disease manifestations of human Sjögren’s syndrome.
HIV infection increases the risk of many types of cancer, including lymphoma. Combination antiretroviral therapy (cART) has reduced, but not eliminated, the risk of HIV-associated lymphoma. There has been a substantial shift in the subtypes of lymphoma observed in HIV-infected patients treated with cART. In this review, we will first outline these changes based on epidemiological studies and describe the impact of cART on lymphoma risk and mortality. Then, we will discuss some immunological factors that may contribute to the increased risk of lymphoma persisting after the administration of cART, including immunological non-response to therapy, chronic B-cell activation and dysfunction, T follicular helper cells, natural killer cells and altered lymphopoiesis. A better understanding of the pathophysiologic mechanisms of HIV-associated lymphoma under effective cART will inform future treatment strategies.
HIV-1 infection is associated with increased risk for B-cell lymphomas. How HIV infection promotes the development of lymphoma is unclear, but it may involve chronic B-cell activation, inflammation, and/or impaired immunity, possibly leading to a loss of control of oncogenic viruses and reduced tumor immunosurveillance. We hypothesized that HIV structural proteins may contribute to lymphomagenesis directly, because they can persist long term in lymph nodes in the absence of viral replication. The HIV-1 transgenic mouse Tg26 carries a noninfectious HIV-1 provirus lacking part of the gag-pol region, thus constituting a model for studying the effects of viral products in pathogenesis. Approximately 15% of Tg26 mice spontaneously develop leukemia/lymphoma. We investigated which viral proteins are associated with the development of leukemia/lymphoma in the Tg26 mouse model, and performed microarray analysis on RNA from spleen and lymph nodes to identify potential mechanisms of lymphomagenesis. Of the viral proteins examined, only expression of HIV-1 matrix protein p17 was associated with leukemia/lymphoma development and was highly expressed in bone marrow before disease. The tumor cells resembled pro-B cells, and were CD19(+)IgM(-)IgD(-)CD93(+)CD43(+)CD21(-)CD23(-)VpreB(+)CXCR4(+) Consistent with the pro-B-cell stage of B-cell development, microarray analysis revealed enrichment of transcripts, including Rag1, Rag2, CD93, Vpreb1, Vpreb3, and Igll1 We confirmed RAG1 expression in Tg26 tumors, and hypothesized that HIV-1 matrix protein p17 may directly induce RAG1 in B cells. Stimulation of human activated B cells with p17 enhanced RAG1 expression in three of seven donors, suggesting that intracellular signaling by p17 may lead to genomic instability and transformation
The transmission of herpesviruses depends on viral shedding at mucosal surfaces. The salivary gland represents a major site of persistent viral replication for many viruses, including cytomegalovirus. We established a mouse model of salivary gland dysfunction after acute viral infection and investigated the cellular requirements for the loss of secretion. Murine cytomegalovirus (MCMV) infection severely impaired saliva secretion independently of salivary gland virus levels. Lymphocytes or circulating monocytes/macrophages were not required for secretory dysfunction. Dysfunction occurred before glandular inflammation, suggesting that a soluble mediator initiated the disruption of acinar cell function. Despite genetic differences in innate resistance to MCMV, NK cells protected the host against acinar atrophy and the loss of secretions under conditions of an exceedingly low virus inoculum. NK cells also modulated the type of glandular inflammation after infection, as they prevented an influx of Siglec-F ؉ polymorphonuclear leukocytes (PMNs). Therefore, beyond their recognized role in controlling MCMV replication, NK cells preserve organ integrity and function and regulate the innate inflammatory response within the gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.