Autism spectrum disorder is a debilitating condition with possible neurodevelopmental origins but unknown neuroanatomical correlates. Whereas investigators have paid much attention to the cerebral cortex, few studies have detailed the basal ganglia in autism. The caudate nucleus may be involved in the repetitive movements and limbic changes of autism. We used immunohistochemistry for calretinin and neuropeptide Y in 24 age- and gender-matched patients with autism spectrum disorder and control subjects ranging in age from 13 to 69 years. Patients with autism had a 35% lower density of calretinin+ interneurons in the caudate that was driven by loss of small calretinin+ neurons. This was not caused by altered size of the caudate, as its cross-sectional surface areas were similar between diagnostic groups. Controls exhibited an age-dependent increase in the density of medium and large calretinin+ neurons, whereas subjects with autism did not. Diagnostic groups did not differ regarding ionized calcium-binding adapter molecule 1+ immunoreactivity for microglia, suggesting chronic inflammation did not cause the decreased calretinin+ density. There was no statistically significant difference in the density of neuropeptide Y+ neurons between subjects with autism and controls. The decreased calretinin+ density may disrupt the excitation/inhibition balance in the caudate leading to dysfunctional corticostriatal circuits. The description of such changes in autism spectrum disorder may clarify pathomechanisms and thereby help identify targets for drug intervention and novel therapeutic strategies.
Schizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry. Compositional analysis of snRNA-seq data revealed a reduction in abundance of GABAergic neurons and a concomitant increase in principal neurons, most pronounced for upper cortical layer subtypes, which was substantiated by histological analysis. Many neuronal subtypes showed extensive transcriptomic changes, the most marked in upper-layer GABAergic neurons, including down-regulation in energy metabolism and up-regulation in neurotransmission. Transcription factor network analysis demonstrated a developmental origin of transcriptomic changes. Last, Visium spatial transcriptomics further corroborated upper-layer neuron vulnerability in schizophrenia. Overall, our results point toward general network impairment within upper cortical layers as a core substrate associated with schizophrenia symptomatology.
BackgroundThe excitatory/inhibitory imbalance theory is widely accepted in the pathology of autism spectrum disorder. Recent results suggest its relevance in the aetiology of schizophrenia as well (Jardri 2016, Yang 2017, Gao and Penzes 2015). In order to discover the possibly altered neuronal composition in schizophrenia numerous studies have been focussing mainly on different cortical regions such as the ventromedial prefrontal cortex and dorsolateral prefrontal cortex. In particular, various interneuronal populations have been found altered.2 However, relatively little is known about the neuroanatomical changes of subcortical structures, such as the caudate nucleus, in the pathology of schizophrenia.MethodsTherefore, we examined the immunohistochemical distribution of calretinin (CR) and NPY-immunopositive neurons in the caudate nucleus and the dorsolateral prefrontal cortex. The state of microglial activation was controlled by the detection of Iba1 and TMEM119. In order to corroborate our results obtained by immunohistochemistry (IHC) qPCR analyses were also conducted.ResultsThe present study provides evidence for the altered interneuronal composition of caudate nucleus in schizophrenia without signs of microglial activation. There were small, medium and large CR-immunopositive (CR-ip) interneurons detected in the caudate nucleus. There was a 32% decrease in the density of all CR-ip interneurons (p=0.020, statistical power=0.747) that was driven by the loss of the small CR-ip interneurons (p=0.017, statistical power=0.777) while the densities of the medium and large CR-ip and NPY-ip interneurons were not significantly altered (p=0.078, p=0.436, p=0.125, respectively). Our experiments were also extended to the dorsolateral prefrontal cortex (medial frontal gyrus and superior frontal gyrus) where no significant changes were seen by IHC. However, qPCR analyses revealed a trend of decreased CR mRNA levels in schizophrenia (p=0.061, statistical power=0.485) while returned no significant changes regarding mRNA levels of NPY, Iba1 and TMEM119. No significant interactions between variables were seen controlling for PMI, age and gender by univariate, multifactorial ANOVA.DiscussionWe have discovered one of the most striking examples of altered neuronal densities in the forebrain in schizophrenia; a highly significant decrease in CR-ip neuronal density in the caudate nucleus. Future studies are warranted to elucidate neuronal inputs to CR-ip neurons in the caudate nucleus and whether they innervate local interneurons or medium spiny neurons. If they primarily regulate local interneurons they may disinhibit medium spiny neurons. If they directly innervate medium spiny neurons they may inhibit the principal cells of the striatum. It will also be important to determine if the large, medium and small CR-ip neurons have different connectivity and thus segregate function. Interestingly our results regarding the decreased density of CR-ip interneurons are in line with our previous observations in ASD1 that underline t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.