By virtue of their size, functional group diversity, and complex structure, proteins can often recognize and modulate disease-relevant macromolecules that present a challenge to smallmolecule reagents. Additionally, high-throughput screening and evolution-based methods often make the discovery of new protein binders simpler than the analogous small-molecule discovery process. However, most proteins do not cross the lipid bilayer membrane of mammalian cells. This largely limits the scope of protein therapeutics and basic research tools to those targeting disease-relevant receptors on the cell surface or extracellular matrix. Previously, researchers have shown that cationic resurfacing of proteins can endow cell penetration. However, in our experience, many proteins are not amenable to such extensive mutagenesis. Here, we report that nanobodies-a small and stable protein that can be evolved to recognize virtually any disease-relevant receptor-are amenable to cationic resurfacing, which results in cell internalization. Once internalized, these nanobodies access the cytosol. Polycationic resurfacing does not appreciably alter the structure, expression, and function (target recognition) of a previously reported GFP-binding nanobody, and multiple nanobody scaffolds are amenable to polycationic resurfacing. Given this, we propose that polycationic resurfaced cell-penetrating nanobodies might represent a general scaffold for intracellularly targeted protein drug discovery.
Currently, 7 of the top 10 selling drugs are biologics, and all of them are proteins. Their large size, structural complexity, and molecular diversity often results in surfaces capable of potent and selective recognition of receptors that challenge, or evade, traditional small molecules. However, most proteins do not penetrate the lipid bilayer exterior of mammalian cells. This severe limitation dramatically limits the number of disease-relevant receptors that proteins can target and modulate. Given the major role proteins play in modern medicine, and the magnitude of this limitation, it is unsurprising that an enormous amount of effort has been dedicated to overcoming this pesky impediment. In this article, we summarize and evaluate current approaches for intracellular delivery of exogenous proteins to mammalian cells and, in doing so, aim to illuminate fertile ground for future discovery in this critical area of research.
The immune system utilizes antibodies to recognize foreign or disease-relevant receptors, initiating an immune response to destroy unwelcomed guests. Because researchers can evolve antibodies to bind virtually any target, it is perhaps unsurprising that these reagents, and their small-molecule conjugates, are used extensively in clinical and basic research environments. However, virtues of antibodies are countered by significant challenges. Foremost among these is the need for expression in mammalian cells (largely due to often necessary post-translational modifications). In response to these challenges, researchers have developed an array of minimalist antibodies and mimetics, which are smaller, more stable, simpler to express in Escherichia coli, and amendable to laboratory evolution and protein engineering. Here we describe these scaffolds and discuss recent applications of minimalist antibodies and mimetics.
Enzyme-linked immunosorbent assay (ELISA), flow cytometry, and Western blot are common bioanalytical techniques. Successful execution traditionally requires the use of one or more commercially available antibody-small-molecule dye, or antibody-reporter protein conjugates that recognize relatively short peptide tags (<15 amino acids). However, the size of antibodies, and their molecular complexity (by virtue of post-translational disulfide formation and glycosylation) typically requires either expression in mammalian cells or purification from immunized mammals. The preparation and purification of chemical dye- or reporter protein-antibody conjugates is often complicated and expensive, and not commonplace in academic laboratories. In response, researchers have developed comparatively simpler protein scaffolds for macromolecular recognition, which can be expressed with relative ease in E. coli and can be evolved to bind virtually any target. Nanobodies—a minimalist scaffold generated from camelid-derived heavy chain IgGs—is one such example. A multitude of nanobodies have been evolved to recognize a diverse array of targets, including a short peptide. Here, this peptide tag (termed BC2T), and BC2 nanobody-dye conjugates or reporter protein fusions are evaluated in ELISA, flow cytometry, and Western blot experiments, and compared to analogous experiments using commercially available antibody-conjugate/peptide tag pairs. Collectively, the utility and practicality of nanobody-based reagents in bioanalytical chemistry is demonstrated.
Alanine scanning mutagenesis of a recently reported prostate cancer cell-selective Protein Transduction Domain (PTD) was used to assess the specific contribution each residue plays in cell uptake efficiency and cell-selectivity. These studies resulted in the identification of two key residues. Extensive mutagenesis at these key residues generated multiple mutants with significantly improved uptake efficiency and cell-selectivity profiles for targeted cells. The best mutant exhibits ~19-fold better uptake efficiency and ~4-fold improved cell-selectivity for a human prostate cancer cell line. In addition, while the native PTD sequence was capable of delivering functional fluorescent protein to the interior of a prostate cancer cells, only modest functional enzyme delivery was achieved. In contrast, the most potent mutant was able to deliver large quantities of a functional enzyme to the interior of human prostate cancer cells. Taken together, the research described herein has significantly improved the efficiency, cell-selectivity, and functional utility of a prostate cancer PTD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.