We recently identified mutations of ARX in nine genotypic males with X-linked lissencephaly with abnormal genitalia (XLAG), and in several female relatives with isolated agenesis of the corpus callosum (ACC). We now report 13 novel and two recurrent mutations of ARX, and one nucleotide change of uncertain significance in 20 genotypic males from 16 families. Most had XLAG, but two had hydranencephaly and abnormal genitalia, and three males from one family had Proud syndrome or ACC with abnormal genitalia. We obtained detailed clinical information on all 29 affected males, including the nine previously reported subjects. Premature termination mutations consisting of large deletions, frameshifts, nonsense mutations, and splice site mutations in exons 1 to 4 caused XLAG or hydranencephaly with abnormal genitalia. Nonconservative missense mutations within the homeobox caused less severe XLAG, while conservative substitution in the homeodomain caused Proud syndrome. A nonconservative missense mutation near the C-terminal aristaless domain caused unusually severe XLAG with microcephaly and mild cerebellar hypoplasia. In addition, several less severe phenotypes without malformations have been reported, including mental retardation with cryptogenic infantile spasms (West syndrome), other seizure types, dystonia or autism, and nonsyndromic mental retardation. The ARX mutations associated with these phenotypes have included polyalanine expansions or duplications, missense mutations, and one deletion of exon 5. Together, the group of phenotypes associated with ARX mutations demonstrates remarkable pleiotropy, but also comprises a nearly continuous series of developmental disorders that begins with hydranencephaly, lissencephaly, and agenesis of the corpus callosum, and ends with a series of overlapping syndromes with apparently normal brain structure.
We have found mutations in the Menkes disease gene (MNK) which impair, but do not abolish, correct mRNA splicing in patients with less severe clinical phenotypes. In one family, four males aged 2-36 years with a distinctive Menkes variant have a mutation at the +3 position of a splice donor site near the 3' end of the Menkes coding sequence that is associated with exon skipping and a stable mutant transcript. In an unrelated 15-year-old male with typical occipital horn syndrome, a point mutation at the -2 exonic position of a splice donor site in the middle of the gene causes exon-skipping and activation of a cryptic splice acceptor site. In both mutations, maintenance of some normal splicing is demonstrable by RT-PCR, cDNA sequencing and ribonuclease protection.
Objective. Aicardi-Goutières syndrome (AGS) is an early-onset encephalopathy resembling congenital viral infection that is characterized by basal ganglia calcifications, loss of white matter, cerebrospinal fluid (CSF) lymphocytosis, and elevated interferon-␣ levels in the CSF. Studies have shown that AGS is an autosomalrecessive disease linked to mutations in 5 genes, encoding the 3 -repair DNA exonuclease 1 (TREX1), the 3 subunits of ribonuclease H2 (RNASEH2A-C), and sterile alpha motif domain and HD domain-containing protein 1 (SAMHD1). In this study we further characterized the phenotypic spectrum of this disease.Methods. Clinical and laboratory data were obtained from 26 patients fulfilling the clinical diagnostic criteria for AGS. Genomic DNA was screened for mutations in all 5 AGS genes by direct sequencing, and sera were analyzed for autoantibodies.Results. In 20 patients with AGS, 20 mutations, 12 of which were novel, were identified in all 5 AGS genes. Clinical and laboratory investigations revealed a high prevalence of features (some not previously described in patients with AGS) that are commonly seen in patients with systemic lupus erythematosus (SLE), such as thrombocytopenia, leukocytopenia, antinuclear antibodies, erythematous lesions, oral ulcers, and arthritis, which were observed in 12 (60%) of 20 patients with AGS. Moreover, the coexistence of AGS and SLE, was for the first time, demonstrated in 2 patients with molecularly proven AGS.Conclusion. These findings expand the phenotypic spectrum of lupus erythematosus in AGS and provide further insight into its disease mechanisms by Supported by the Deutsche Forschungsgemeinschaft (DFG grant LE 1074/3-1).
We review the cardiac abnormalities in 94 patients (27 new, 67 literature) with Costello syndrome, an increasingly recognized syndrome consisting of increased birth weight, postnatal growth retardation, and distinctive facial, skin, and musculoskeletal features (MIM 218040). A cardiac abnormality was found in 59 (63%) patients, with each of three categories occurring in approximately one-third of patients. A cardiovascular malformation (CVM) was noted in 30%, typically pulmonic stenosis (46% of those with a CVM). Cardiac hypertrophy was reported in 34%, which involved the left ventricle in 50% and was usually consistent with classic hypertrophic cardiomyopathy (HCM). A variety of rhythm disturbances were reported in 33%. Most (74%) were atrial tachycardia that was reported as supraventricular, chaotic, multifocal, or ectopic. Of 31 patients with a rhythm abnormality, 22 (68%) had an additional abnormality, i.e., CVM (4), cardiac hypertrophy (12), or both (6). Nine patients had isolated dysrhythmia, five (56%) of whom died. All of the 12 (13%) patients who died had a cardiac abnormality. One patient died of embryonal rhabdomyosarcoma, but in the remainder, a cardiac cause of death could not be disproved. All patients with Costello syndrome need a baseline cardiology evaluation with echocardiography and Holter monitoring. Additional prospective evaluations, even in patients without apparent cardiac abnormalities, would be prudent, although data are insufficient to propose a specific schedule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.